1,776 research outputs found

    Sediment management and the renewability of floodplain clay for structural ceramics

    Get PDF
    The Netherlands has vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. Most clay is extracted from the so-called embanked floodplains along the rivers Rhine and Meuse, areas that are flooded during high-discharge conditions. Riverside clay extraction is-at least in theory-compensated by deposition. Based on a sediment balance (deposition versus extraction), we explore the extent to which clay can be regarded as a renewable resource, with potential for sustainable use. Beyond that, we discuss the implications for river and sediment management, especially for the large engineering works that are to be undertaken to increase the discharge capacities of the Rhine and Meuse. Extraction rates are based on production statistics for clay, as well as those for fired end-products. Deposition rates are estimated from published and unpublished geological data (clay volumes and thicknesses, datings, etc.) and from morphological modeling studies. Comparisons between extraction and deposition are made at three different time-space scales: (1) long term (post-1850)/large scale (all Dutch floodplains), (2) present/large scale, and (3) present/site scale. The year 1850 is relevant because it approximately marks the beginning of the current, fully engineered river systems, in which depositional processes are constrained by dikes and groynes. As the Industrial Revolution began in the same period, post-1850 sediments can be identified by their pollution with heavy metals. (1) We estimate the post-1850 clay volume in situ at about 0.20 km(3), and the total extracted volume in the same period at about 0.17 km(3). This puts the net long-term average deposition rate of clay at similar to 1.3 million m(3)/year and the corresponding extraction rate at similar to 1.1 million m(3)/year. (2) Current accumulation is approximately 0.4 million m(3)/year and expected to increase, and current extraction is about 0.7 million m(3)/year and expected to decrease. (3) Clay extraction creates a depression that has an increased sediment-trapping efficiency. This local effect is not considered explicitly in large-scale morphological modeling. Based on maximum observed sedimentation rates, we estimate that replenishment of a clay site takes in the order of 150 years. As clay extraction lowers some 0.5 km(2) of floodplain yearly, a surface area of approximately 75 km(2) would be required for sustainable clay extraction. This is about 1/6 of the total surface area of the embanked floodplains. On the long term, clay extraction from the embanked floodplain depositional environment has been sustainable. At strongly decreasing deposition rates, the ratio between extraction and replenishment seems to have shifted towards unsustainable. However, current sedimentation is estimated conservatively. The site-scale approach suggests that, even if extraction would currently exceed deposition, this could be resolved with sediment management, that is, with site restoration measures aimed at higher sediment-trapping efficiency. Our results have implications for river engineering, especially where substantial digging is involved (floodplain lowering, high-discharge bypass channels, obstacle removal). First, this inevitably affects the clay resources that we studied, while resource sterilization should be avoided. Secondly, the effect that any form of digging has on subsequent sedimentation-increased rates-relates to long-term river maintenance. We conclude that floodplain clay is a renewable resource, especially if managed accordingly. Beyond that, we established that clay extraction is a significant, lasting factor in floodplain evolution along the Rhine and Meuse Rivers. The interests of the extractive industry and river managers could be served jointly with sediment management plans that are based on sediment-budget analyse

    Costs and Benefits of Green Roof Types for Cities and Building Owners

    Get PDF
    Increasing urbanization and the effects of climate change will bring new challenges for cities, such as energy saving and supply of renewable energy, preventing urban heat islands and water retention to deal with more frequent downpours. A major urban surface, the surface of roofs, is nowadays hardly exploited and could be used to make cities more ‘future proof’ or resilient. Many Dutch municipalities have become aware that the use of green roofs as opposed to bituminous roofs positively contributes to these challenges and are stimulating building-owners to retrofit their building with green roofs. This study aims at comparing costs and benefits of roof types, focused on green roofs (intensive and extensive) both on building- and city scale. Core question is the balance between costs and benefits for both scales, given varying local conditions. Which policy measures might be needed in the future in order to apply green roofs strategically in regard to local demands? To answer this question the balance of costs and benefits of green roofs is divided into a public and an individual part. Both balances use a strengths, weaknesses, opportunities and threats framework to determine the chance of success for the application of green roofs, considering that the balance for green roofs on an individual scale influences the balance on a public scale. The outcome of this combined analyses in the conclusion verifies that a non-committal policy for green roofs is not an effective way to prepare the city sufficiently for future climate changes

    Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures

    Get PDF
    Soya bean tempe is known for its bioactivity in reducing the severity of diarrhoea in piglets. This bioactivity is caused by an inhibition of the adhesion of enterotoxigenic Escherichia coli (ETEC) to intestinal cells. In this paper, we assessed the bioactive effect of soya tempe on a range of ETEC target strains, as well as the effect of a range of cereal and leguminous substrates and starter pure cultures. Soya bean tempe extracts strongly inhibited the adhesion of ETEC strains tested. All tempe made from other leguminous seeds were as bioactive as soya bean tempe, whereas tempe made from cereals showed no bioactivity. Using soya beans as substrate, fermentation with several fungi (Mucor, Rhizopus spp. and yeasts) as well as Bacillus spp. resulted in bioactive tempe, whereas fermentation with lactobacilli showed no bioactivity. The active component is releasedor formed during the fermentation and is not present in microbial biomass and only partly in unfermented substrates. The bioactivity being not specific for a single ETEC strain, makes the bioactive tempe relevant for applications in animal husbandry

    Estimating a concave distribution function from data corrupted with additive noise

    Full text link
    We consider two nonparametric procedures for estimating a concave distribution function based on data corrupted with additive noise generated by a bounded decreasing density on (0,∞)(0,\infty). For the maximum likelihood (ML) estimator and least squares (LS) estimator, we state qualitative properties, prove consistency and propose a computational algorithm. For the LS estimator and its derivative, we also derive the pointwise asymptotic distribution. Moreover, the rate n−2/5n^{-2/5} achieved by the LS estimator is shown to be minimax for estimating the distribution function at a fixed point.Comment: Published in at http://dx.doi.org/10.1214/07-AOS579 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Surface acoustic wave modulation of single photon emission from GaN/InGaN nanowire quantum dots

    Get PDF
    On-chip quantum information processing requires controllable quantum light sources that can be operated on-demand at high-speeds and with the possibility of in-situ control of the photon emission wavelength and its optical polarization properties. Here, we report on the dynamic control of the optical emission from core-shell GaN/InGaN nanowire (NW) heterostructures using radio frequency surface acoustic waves (SAWs). The SAWs are excited on the surface of a piezoelectric lithium niobate crystal equipped with a SAW delay line onto which the NWs were mechanically transferred. Luminescent quantum dot (QD)-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell were identified using stroboscopic micro-photoluminescence (micro-PL) spectroscopy. They exhibit narrow and almost fully linearly polarized emission lines in the micro-PL spectra and a pronounced anti-bunching signature of single photon emission in the photon correlation experiments. When the nanowire is perturbed by the propagating SAW, the embedded QD is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling, giving rise to a spectral fine-tuning within a ~1.5 meV bandwidth at the acoustic frequency of ~330 MHz. This outcome can be further combined with spectral detection filtering for temporal control of the emitted photons. The effect of the SAW piezoelectric field on the QD charge population and on the optical polarization degree is also observed. The advantage of the acousto-optoelectric over other control schemes is that it allows in-situ manipulation of the optical emission properties over a wide frequency range (up to GHz frequencies).Comment: arXiv admin note: text overlap with arXiv:1902.0791

    Digital diplomacy in GCC countries: strategic communication of Western embassies on Twitter

    Get PDF
    Drawing upon online communication research, this study identifies six effective communication strategies for social media-based diplomacy on Twitter: interactive, personalized, positive, relevant, and transparent communication among a broad network of stakeholders. By using an extensive mix-method design (i.e., combining a manual content and automated network analyses, N = 4438 tweets), this research examines to what extent these communication strategies are adopted on Twitter by Western embassies active in countries from the Gulf Cooperation Council. We found that embassies are not utilizing social media to its full potential. Although embassies are transparent, use positive sentiment in their online communication and post relevant information to their stakeholders, they hardly engage in direct interactive and personal communication, and only reach out to a limited group of stakeholders. We recommend embassies to put more emphasis on two-way interactive communication with a vast variety of stakeholders
    • 

    corecore