964 research outputs found

    Dielectric susceptibility of the Coulomb-glass

    Full text link
    We derive a microscopic expression for the dielectric susceptibility χ\chi of a Coulomb glass, which corresponds to the definition used in classical electrodynamics, the derivative of the polarization with respect to the electric field. The fluctuation-dissipation theorem tells us that χ\chi is a function of the thermal fluctuations of the dipole moment of the system. We calculate χ\chi numerically for three-dimensional Coulomb glasses as a function of temperature and frequency

    Intruders in the Dust: Air-Driven Granular Size Separation

    Full text link
    Using MRI and high-speed video we investigate the motion of a large intruder particle inside a vertically shaken bed of smaller particles. We find a pronounced, non-monotonic density dependence, with both light and heavy intruders moving faster than those whose density is approximately that of the granular bed. For light intruders, we furthermore observe either rising or sinking behavior, depending on intruder starting height, boundary condition and interstitial gas pressure. We map out the phase boundary delineating the rising and sinking regimes. A simple model can account for much of the observed behavior and show how the two regimes are connected by considering pressure gradients across the granular bed during a shaking cycle.Comment: 5 pages, 4 figure

    Kinetic Accessibility of Buried DNA Sites in Nucleosomes

    Get PDF
    Using a theoretical model for spontaneous partial DNA unwrapping from histones, we study the transient exposure of protein-binding DNA sites within nucleosomes. We focus on the functional dependence of the rates for site exposure and reburial on the site position, which is measurable experimentally and pertinent to gene regulation. We find the dependence to be roughly described by a random walker model. Close inspection reveals a surprising physical effect of flexibility-assisted barrier crossing, which we characterize within a toy model, the "semiflexible Brownian rotor."Comment: final version as published in Phys. Rev. Let

    Optimal flexibility for conformational transitions in macromolecules

    Get PDF
    Conformational transitions in macromolecular complexes often involve the reorientation of lever-like structures. Using a simple theoretical model, we show that the rate of such transitions is drastically enhanced if the lever is bendable, e.g. at a localized "hinge''. Surprisingly, the transition is fastest with an intermediate flexibility of the hinge. In this intermediate regime, the transition rate is also least sensitive to the amount of "cargo'' attached to the lever arm, which could be exploited by molecular motors. To explain this effect, we generalize the Kramers-Langer theory for multi-dimensional barrier crossing to configuration dependent mobility matrices.Comment: 4 pages, 4 figure

    Proton endor study of the photoexcited triplet state PT in Rps. sphaeroides R-26 photosynthetic reaction centres

    Get PDF
    The photoexcited triplet state PT of Rhodopseudomonas sphaeroides R-26 has been investigated by ENDOR measurements performed on frozen photosynthetic reaction centre solutions. For the first time hyperfine data could be obtained for PT. These data indicate a delocalisation of the triplet state over two bacteriochlorophyll a molecules

    ESR, ENDOR and TRIPLE resonance studies of the primary donor radical cation P960+ in the photosynthetic bacterium Rhodopseudomonas viridis

    Get PDF
    The light-induced radical cation of the primary electron donor P960+• in photosynthetic reaction centers from Rhodopseudomonas viridis has been investigated by ESR, ENDOR and TRIPLE techniques. Both the comparison with the cation radical of monomeric bacteriochlorophyll b (BChl b) and with molecular-orbital calculations performed on P960+• using the results of an X-ray structure analysis, consistently show an asymmetric distribution of the unpaired electron over the two BChl b molecules which constitute P960+•. The possible relevance of this result for the primary electron transfer step in the reaction center is briefly discussed

    Optimization by thermal cycling

    Full text link
    Thermal cycling is an heuristic optimization algorithm which consists of cyclically heating and quenching by Metropolis and local search procedures, respectively, where the amplitude slowly decreases. In recent years, it has been successfully applied to two combinatorial optimization tasks, the traveling salesman problem and the search for low-energy states of the Coulomb glass. In these cases, the algorithm is far more efficient than usual simulated annealing. In its original form the algorithm was designed only for the case of discrete variables. Its basic ideas are applicable also to a problem with continuous variables, the search for low-energy states of Lennard-Jones clusters.Comment: Submitted to Proceedings of the Workshop "Complexity, Metastability and Nonextensivity", held in Erice 20-26 July 2004. Latex, 7 pages, 3 figure

    The radical cation of bacteriochlorophyll b. A liquid-phase endor and triple resonance study

    Get PDF
    The previous termradical cationnext term of bacterioehlorophyll b (BChl b) is investigated by ENDOR and TRIPLE resonance in liquid solution. The experimental hyperfine coupling constants, ten proton and three nitrogen couplings, are compared with the predictions from advanced molecular-orbital calculations (RHF INDO/SP). The detailed picture obtained of the spin density distribution is a prerequisite for the investigation of the primary electron donor previous termradical cationnext term in BChl b containing photosynthetic bacteria
    corecore