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Conformational transitions in macromolecular complexes often involve the reorientation of leverlike
structures. Using a simple theoretical model, we show that the rate of such transitions is drastically
enhanced if the lever is bendable, e.g., at a localized hinge. Surprisingly, the transition is fastest with an
intermediate flexibility of the hinge. In this intermediate regime, the transition rate is also least sensitive to
the amount of ‘‘cargo’’ attached to the lever arm, which could be exploited by molecular motors. To
explain this effect, we generalize the Kramers-Langer theory for multidimensional barrier crossing to
configuration-dependent mobility matrices.
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Many biological functions depend on transitions in the
global conformation of macromolecules, and the associ-
ated kinetic rates can be under strong evolutionary pres-
sure. For instance, the directed motion of molecular motors
is based on power strokes [1], protein binding to DNA can
require DNA bending [2] or spontaneous partial unwrap-
ping of DNA from histones [3,4], and the functioning of
some ribozymes depends on global transitions in the ter-
tiary structure [5]. These and other examples display two
generic features: (i) A long segment within the molecule or
complex is turned during the transition, e.g., an RNA stem
in a ribozyme, the DNA as it unwraps from histones or
bends upon protein binding, or the lever arm of a molecular
motor relative to the attached head; (ii) the segment has a
certain bending flexibility. Here, we use a minimal physi-
cal model to study the coupled dynamics of the transition
and the bending fluctuations.

Our model, illustrated in Fig. 1, demonstrates explicitly
how even a small bending flexibility can drastically accel-
erate the transition. Furthermore, if the flexibility arises
through a localized ‘‘hinge’’, e.g., in the protein structure
of some molecular motors [6,7] or an interior loop in an
RNA stem, we find that the transition rate is maximal at an
intermediate hinge stiffness. Thus, in situations where
rapid transition rates are crucial, molecular evolution could
tune a hinge stiffness to the optimal value. We find that an
intermediate stiffness is optimal also from the perspective
of robustness, since it renders the transition rate least
sensitive to changes in the drag on the lever arm, incurred,
e.g., by different cargos transported by a molecular motor.

Our finding of an optimal rate is reminiscent of a phe-
nomenon known as resonant activation [8,9], where a
transition rate displays a peak as a function of the charac-
teristic time scale of fluctuations in the potential barrier.
However, we will see that the peak in our system has a
different origin: a trade-off between the accelerating effect
of the bending fluctuations and a decreasing average mo-
bility of the reaction coordinate. The standard Kramers-
Langer theory [10] for multidimensional transition pro-

cesses is not sufficient to capture this trade-off. A general-
ization of the theory to the case of configuration-dependent
mobility matrices turns out to be essential to understand the
peak at intermediate stiffness.
Model.—We model the conformational transition as a

thermally activated change in the attachment angle ’ of a
macromolecular lever; see Fig. 1. The lever has two seg-
ments connected by a hinge with stiffness �, which renders
the lever preferentially straight, but allows thermal fluctu-
ations in the bending angle �. The energy function V�’; ��
of this two-segment lever (TSL) is
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where kBT is the thermal energy unit. The hinge, described
by the first term, serves not only as a simple model for a
protein or RNA hinge, but also as a first approximation to a
more continuously distributed flexibility. The second term
is the potential on the attachment angle ’, which produces
a metastable minimum at �’; �� � �0; 0�. The thermally
assisted escape [11] from this minimum passes through the

a) b)

FIG. 1. Schematic illustration of the ‘‘two-segment lever’’
(TSL). (a) The two segments of lengths 1 and � are connected
by a hinge and attached to the origin. The viscous drag acts on
the ends of the segments as indicated by the beads. (b) Schematic
illustration of the barrier crossing processes. The external meta-
stable potential V�’� is indicated by shading (top; dark corre-
sponds to high energy) and is also sketched below.

PRL 99, 178101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 OCTOBER 2007

0031-9007=07=99(17)=178101(4) 178101-1 © 2007 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/132294547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.99.178101


transition state at �’; �� � �b=a; 0� with a barrier height
�V � b3kBT=6.

In the present context, inertial forces are negligible; i.e.,
it is sufficient to consider the stochastic dynamics of the
TSL in the overdamped limit. We localize the friction
forces to the ends of the two segments, as indicated by
the beads in Fig. 1(a). The length of the first segment
defines our length unit and � denotes the length of the
second segment. We choose our time unit such that the
friction coefficient of the first bead is unity, and we denote
the coefficient of the second bead by �. In general, the
derivation of the correct dynamic equations can be non-
trivial for stochastic systems with constraints [12,13]. For
instance, implementing fixed segment lengths through the
limit of stiff springs leads to Fokker-Planck equations with
equilibrium distributions that depend on the way in which
the limit is taken [13]. However, for our overdamped
system, we can avoid this problem by imposing the desired
equilibrium distribution, i.e., the Boltzmann distribution
p � exp��V=kBT�, which together with the well-defined
deterministic equations of motion uniquely determines the
Fokker-Planck equation for the TSL.

The deterministic equations of motion take the form
_qk � �Mkl@V=@ql with the coordinates �q1; q2� � �’; ��

and a mobility matrix M. We obtain M with a standard
Lagrange procedure: Given linear friction, M is the inverse
of the friction matrix, which in turn is the Hessian matrix of
the dissipation function [14]. This yields

 M �
1

1� �sin2�

1 ��cos�
�

��cos�
�

��2 cos�
� � 1��

��2

0@ 1A: (2)

The Fokker-Planck equation then follows from the con-
tinuity equation @tp�fqig; t� � �@kjk�fqig; t� together with

 jk�fqig; t� � �Mkl

�
@V
@ql

� kBT
@
@ql

�
p�fqig; t� (3)

as the probability flux density. Our analytical analysis
below is based directly on Eqs. (2) and (3), while we
perform all Brownian dynamics simulations with a set of
equivalent stochastic differential equations [15].

Transition rate.—To explore the phenomenology of the
TSL, we performed simulations to determine its average
dwell time � in the metastable state, for a range of hinge
stiffnesses � [16]. The rate for the conformational transi-
tion is related to the dwell time by k��� � 1=����. Figure 2
shows k��� (circles) for a barrier �V � 12kBT, a distance
�’ � 0:4 to the transition state, and � � � � 1 (data for
different parameter values behave qualitatively similar, as
long as the process is reaction limited, i.e., �V is suffi-
ciently large that � is much longer than the time for the
TSL to freely diffuse over an angle �’). We observe a
significant flexibility-induced enhancement of the transi-
tion rate over a broad range of stiffnesses, compared to the
dynamics in the stiff limit (� ! 1); see the inset. Note that
the enhancement persists even at relatively large �, where

typical thermal bending fluctuations �’� ���1=2� are sig-
nificantly smaller than �’. Surprisingly, the rate is largest
at an intermediate stiffness (� � 10). This observation
suggests that the stiffness of molecular hinges could be
used, by evolution or in synthetic constructs, to tune and
optimize reaction rates.

When the friction coefficient � of the outer bead is in-
creased, the rate of the transition decreases; see Fig. 3(a).
This decrease is most dramatic in the stiff limit (dashed-
dotted line). In the flexible limit (diamonds) the decrease is
less pronounced. Notably, the rate appears least sensitive to
the viscous drag on the outer bead at intermediate �
(circles). Indeed, Fig. 3(b) shows that the �-dependence
of this sensitivity (measured as the slope of the curves in
Fig. 3(a) at � � 1) has a pronounced minimum at � � 20.
Hence, intermediate hinge stiffnesses in the TSL lead to
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FIG. 2 (color online). Simulation data of the barrier crossing
rate normalized by k0 display a prominent peak at finite stiffness
(circles, each obtained from 20 000 simulation runs initialized at
the metastable minimum). The conventional Langer theory fails
to describe the nonmonotonicity of the rate and overestimates the
rate at small �. The generalized Langer theory captures the
nonmonotonicity of the rate and describes the simulation data
accurately; for parameters, see the main text.
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FIG. 3. The sensitivity of the rate to the friction coefficient � is
minimal at intermediate stiffness. (a) Simulation results at � � 0
and � � 25 as well as the theoretical estimates of the rate at � �
0 and in the stiff limit. (b) The derivative of lnk with respect to
ln� evaluated at � � 1, i.e., the slope of the curves in (a), is
minimal in an intermediate stiffness range.
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maximal robustness, which is an important design con-
straint for many biomolecular mechanisms.

It is instructive to consider simple theoretical bounds
on the transition rate. An upper bound is obtained by
completely eliminating the outer bead. The Kramers
rate [17] for the remaining 1D escape process, k0 �
�a2b=2��e��V=kBT , is used in Figs. 2 and 3 to normalize
the transition rates. At the optimal stiffness, the transition
rate in Fig. 2 comes within 20% of this upper bound. An
obvious lower bound is the stiff limit: For � ! 1, the
second segment increases the rotational friction by a factor
� � 1� �1� ��2�, so that the 1D Kramers rate becomes
k1 � k0=�; see the dashed-dotted line in Figs. 2 and 3(a).
However, to fully understand the above phenomenology,
we must consider the coupled dynamics of barrier crossing
and bending. The multidimensional generalization of
Kramers theory is Langer’s formula for the escape rate
over a saddle in a potential landscape [10],

 kLanger �
	
2�

�����������������
dete�w�

j dete�s�j

s
exp

�
�

�V
kBT

�
: (4)

Here, e�w� and e�s� denote the Hessian matrix of the poten-
tial energy, @2V=@qk@ql, evaluated at the well bottom and
the saddle point, respectively, whereas 	 is the unique
negative eigenvalue of the product of the mobility matrix
M and e�s�. Equation (4) can be made plausible in simple
terms: Given a quasiequilibrium in the metastable state, the
determinants and the Boltzmann factor represent the
probability of being in the transition region. The escape
rate is then given by this probability multiplied by the rate
	 at which the system relaxes out of the transition state,
analogous to Michaelis-Menten reaction kinetics.

For our potential (1), the determinants in (4) cancel. The
eigenvalue can be determined analytically (the dashed line
in Fig. 2 shows the resulting kLanger), but it is more in-
structive to consider the expansions for large and small
stiffness. In the stiff limit, the natural small parameter is the
stiffness ratio 
=�, where 
 � a2b is the absolute cur-
vature or ‘‘stiffness’’ of the external potential at the
transition state. The expansion yields kLanger=k1 � 1�
��2�=��
=��O�
2=�2�. As expected, the rate ap-
proaches k1, but the stiff limit is attained only when the
bending fluctuations ����1=2� are small compared to the
width of the barrier �
��1=2�. In the opposite limit, � � 
,
the rate is given by kLanger=k0 � 1� �1� ��1�2�=
�

O��2=
�. Since the linear term is negative, Langer theory
predicts that the transition rate peaks at zero stiffness,
which is clearly at variance with the simulation results. It
is interesting to note, however, that the slope of the linear
decay is independent of �, consistent with our observation
that the transition rate is insensitive to � in the intermediate
stiffness regime. Indeed, Fig. 2 shows that Langer theory
(dashed line) describes the simulation data (circles) rea-
sonably well for intermediate and large hinge stiffness.

To understand the origin of the peak at intermediate
stiffness, it is useful to consider the flexible limit (� �
0). In this limit, the transition state is degenerate in �, and it
seems plausible to estimate the transition rate by using a
�-averaged mobility for the reaction coordinate ’,

 k�� � 0� � k0
Z �

��

d�
2�

M11��� �
k0������������
1� �

p : (5)

This estimate agrees well with the simulation data, see the
dashed line in Fig. 3(a), indicating that the configuration-
dependent mobility (2) plays an important role for the
transition rate. In contrast, conventional Langer theory
assumes a constant mobility matrix near the transition
state. Figure 4 illustrates why the mobility M11 of the
coordinate ’ is affected by the bending angle � and gives
a graphical construction for M11.
Generalized Langer theory.—To account for the mobil-

ity effect, we must generalize the Langer theory to
configuration-dependent mobility matrices. The special
case where the mobility varies only along the reaction
coordinate has already been studied [18]; however, the
main effect in our case is due to the variation in the
transverse direction. In the following, we outline the deri-
vation of the central result, while all details will be pre-
sented elsewhere. Near the saddle, the mobility matrix
takes the form Mij�fqig� � M�s�

ij � 1
2A

kl
ij q̂lq̂k, where q̂i are

deviations from the saddle and Akl
ij denotes the tensor of

second derivatives of the mobility matrix (we assume that
the first derivatives of M vanish at the saddle, which is the
case for the TSL). The escape rate is given by the proba-
bility flux out of the metastable well, divided by the
population inside the well. To calculate the flux, we con-
struct a steady-state solution to the Fokker-Planck equation
in the vicinity of the saddle, as described in [17] for the
conventional Langer theory. We use the ansatz p�fqig� �
1
2peq�fqig�erfc�u�, where peq�fqig� � Z�1e�V�fqig�=kBT and
erfc�u� is the complementary error function with argument
u � Ukq̂k. Inserting the ansatz into the Fokker-Planck
equation yields an equation for the vector U,

a) b)

FIG. 4. (a) The friction opposing rotation of the attachment
angle ’ depends on the bending angle �, since the outer bead is
moved by different amounts in different configurations. (b) For
an infinitesimal displacement d’, the displacement of the outer
bead is sin�d’. The projection of the resulting friction force
onto the direction of motion adds another factor sin�, yielding a
friction coefficient for ’ of 1� �sin2�.
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 Ui��Mije
�s�
jk � Bik� � UiMijUjUk � 0; (6)

where Bik � kBT
P

nA
nk
ni . Bikq̂k is the noise-induced drift,

which is absent in the conventional Langer theory. Ignoring
higher order terms, this equation determines U to be the left
eigenvector of �M�s�e�s� �B to the unique positive eigen-
value 	, and requires U to be normalized such that
UiM

�s�
ij Uj � 	. The directions of the left and right eigen-

vectors of �M�s�e�s� � B have a physical interpretation: U
is perpendicular to the stochastic separatrix, while the
corresponding right eigenvector points in the direction of
the diffusive flux at the saddle [19].

From p�fqig�, the flux density is determined by (3) and
the total flux is obtained by integrating the flux density over
a plane containing the saddle; a convenient choice is the
plane u � 0. Evaluation of the integral is particularly
simple in a coordinate system, where the first coordinate
is parallel to U, and the remaining coordinates are chosen
such that e�s� is diagonal in this subspace, e�s�ij � �i�ij for
i, j > 1. In this coordinate system, the generalized Langer
rate takes the simple form

 k �
	
2�

1� 1
2M11

P
l>1

All
11

�l������������
1� c

p

�����������������
dete�w�

j dete�s�j

s
exp

�
�

�V
kBT

�
; (7)

where c � Uie�1
ij Uj � 1 � B1ie

�1
i1 =M�s�

11 and e�1 denotes
the inverse matrix of e�s�. Equation (7) contains three
corrections to (4), all of which vanish when M�fqig� is
constant: The most important one is given by

P
l>1A

ll
11=�l,

which changes the mobility M11 in the direction of U to an
effective mobility that is averaged over the separatrix with
respect to the Boltzmann distribution. In addition, there are
two corrections incurred by the noise-induced drift: the
factor

������������
1� c

p
and a change due to the fact that 	 is now the

eigenvalue to M�s�e�s� �B instead of M�s�e�s�. The solid
line in Fig. 2 shows the application of Eq. (7) to the TSL. It
captures the peak in the transition rate and thus the essen-
tial phenomenology of the TSL [20].

Discussion.—We introduced the ‘‘two-segment lever’’
as a simple model for a class of conformational transitions
in biomolecules and derived a generalized Langer theory to
understand its behavior. The model clearly demonstrates
how flexibility can enhance the rate of a conformational
transition. This remains true when the hinge in the TSL is
replaced by a more continuous bendability [4]. Interest-
ingly, a discrete hinge has a stiffness regime where the
transition rate is both large and robust. It is conceivable that
this effect is exploited by evolution, for example, in the
design of hinged molecular motors [6,7]. A promising
candidate to test these ideas is myosin II, where mutations
affecting the stiffness of the converter region and the
activity of the motor are known [22,23]. Whether flexibil-
ity assisted barrier crossing is important in processive
motors is difficult to test, since the rate of the conforma-
tional transition has to be considerably faster than the

unbinding rate from the filament. However, the mechanism
could very well be exploited to establish this hierarchy of
rates. We hope that our work will stimulate further experi-
ments to clarify these intriguing questions.
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