760 research outputs found

    How tight are the limits to land and water use? - Combined impacts of food demand and climate change

    Get PDF
    In the coming decades, world agricultural systems will face serious transitions. Population growth, income and lifestyle changes will lead to considerable increases in food demand. Moreover, a rising demand for renewable energy and biodiversity protection may restrict the area available for food production. On the other hand, global climate change will affect production conditions, for better or worse depending on regional conditions. In order to simulate these combined effects consistently and in a spatially explicit way, we have linked the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) with a "Management model of Agricultural Production and its Impact on the Environment" (MAgPIE). LPJ represents the global biosphere with a spatial resolution of 0.5 degree. MAgPIE covers the most important agricultural crop and livestock production types. A prototype has been developed for one sample region. In the next stage this will be expanded to several economically relevant regions on a global scale, including international trade. The two models are coupled through a layer of productivity zones. In the paper we present the modelling approach, develop first joint scenarios and discuss selected results from the coupled modelling system

    Ramanujan sums for signal processing of low frequency noise

    Full text link
    An aperiodic (low frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as M\"obius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low frequency regime. In place we introduce a new signal processing tool based on the Ramanujan sums c_q(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasi-periodic versus the time n of the resonance and aperiodic versus the order q of the resonance. New results arise from the use of this Ramanujan-Fourier transform (RFT) in the context of arithmetical and experimental signalsComment: 11 pages in IOP style, 14 figures, 2 tables, 16 reference

    Mechanical Strength Degradation of Graphite Fiber Reinforced Thermoset Composites Due to Porosity

    Get PDF
    The mechanical strength of composite laminates is sensitive to the presence of porosity. Porosity in laminates is generally considered to be a random distribution of voids incurred during the manufacture process. Larger, interlaminar voids typically result from trapped air or moisture; smaller, intralaminar voids may occur between fibers due to improper wetting or the release of volatile gases during the cure cycle. Porosity has its greatest effects on matrix-dominated mechanical properties such as compressive strength, transverse tensile strength and interlaminar shear strength (ILSS). Judd and Wright [1] have surveyed the existing data and made an appraisal of the effects of voids on the mechanical properties of composites. In a study of porosity in filament wound/CVD carbon-carbon composite [2], the transverse tensile strength was found to decrease exponentially with increasing porosity and followed an empirical equation often attributed to Ryshkewitch [3] and Duckworth [4]: σ = σmaxeBP (1) where σmax is the strength at zero porosity, P is the volume fraction of porosity, and B (a negative number) is an empirical constant that depends on pore size, shape, and orientation. More recently Yoshida et. al

    Excitated state properties of 20-chloro-chlorophyll a

    Get PDF
    The excited-state and lasing properties of 20-chloro-chlorophyll a in ether solution were compared to those of chlorophyll a. Desactivation parameters and cross-sections were obtained from non-linear absorption spectroscopy in combination with a physico-mathematical methods package. The Cl substituent at C-20 (1) increases both intersystem crossing and internal conversion, (2) produces a blue-shift of the S1 absorption spectrum, and (3) leads to pronounced photochemistry

    Health expenditure of employees versus self-employed individuals; a 5-year study.

    Get PDF
    It is unclear to what extent self‐employed choose to become self‐employed. This study aimed to compare the health care expenditures—as a proxy for health—of self‐employed individuals in the year before they started their business, to that of employees. Differences by sex, age, and industry were studied. In total, 5,741,457 individuals aged 25–65 years who were listed in the tax data between 2010 and 2015 with data on their health insurance claims were included. Self‐employed and employees were stratified according to sex, age, household position, personal income, region, and industry for each of the years covered. Weighted linear regression was used to compare health care expenditures in the preceding (year x–1) between self‐employed and employees (in year x). Compare

    FAST CARS: Engineering a Laser Spectroscopic Technique for Rapid Identification of Bacterial Spores

    Get PDF
    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time consuming microscopic, chemical and biological assays. Current research into real time laser spectroscopic detectors of such contaminants is based on e.g. resonant Raman spectroscopy. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. The connection with previous studies based on "Coherent Anti-Stokes Raman Spectroscopy" (CARS) is to be noted. However generating and utilizing maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is much more challenging. This extension of the CARS technique is called FAST CARS (Femtosecond Adaptive Spectroscopic Techniques for Coherent Anti-Stokes Raman Spectroscopy), and the present paper proposes and analyses ways in which it could be used to rapidly identify pre-selected molecules in real time.Comment: 43 pages, 21 figures; replacement with references added. Submitted to the Proceedings of National Academy of Science
    • 

    corecore