196 research outputs found
Dynamical analysis and constraints for the HD 196885 system
The HD\,196885 system is composed of a binary star and a planet orbiting the
primary. The orbit of the binary is fully constrained by astrometry, but for
the planet the inclination with respect to the plane of the sky and the
longitude of the node are unknown. Here we perform a full analysis of the
HD\,196885 system by exploring the two free parameters of the planet and
choosing different sets of angular variables. We find that the most likely
configurations for the planet is either nearly coplanar orbits (prograde and
retrograde), or highly inclined orbits near the Lidov-Kozai equilibrium points,
i = 44^{\circ} or i = 137^{\circ} . Among coplanar orbits, the retrograde ones
appear to be less chaotic, while for the orbits near the Lidov-Kozai
equilibria, those around \omega= 270^{\circ} are more reliable, where \omega_k
is the argument of pericenter of the planet's orbit with respect to the
binary's orbit.
From the observer's point of view (plane of the sky) stable areas are
restricted to (I1, \Omega_1) \sim (65^{\circ}, 80^{\circ}),
(65^{\circ},260^{\circ}), (115^{\circ},80^{\circ}), and
(115^{\circ},260^{\circ}), where I1 is the inclination of the planet and
\Omega_1 is the longitude of ascending node.Comment: 10 pages, 7 figures. A&A Accepte
Apollo asteroids (1566) Icarus and 2007 MK6: Icarus family members?
Although it is more complicated to search for near-Earth object (NEO)
families than main belt asteroid (MBA) families, since differential orbital
evolution within a NEO family can cause current orbital elements to drastically
differ from each other, we have found that Apollo asteroids (1566) Icarus and
the newly discovered 2007 MK6 are almost certainly related. Specifically, their
orbital evolutions show a similar profile, time shifted by only ~1000 yr, based
on our time-lag theory. The dynamical relationship between Icarus and 2007 MK6
along with a possible dust band, the Taurid-Perseid meteor swarm, implies the
first detection of an asteroidal NEO family, namely the "Icarus asteroid
family".Comment: 11 pages, 1 figure, to appear on Astrophysical Journal Letters
(journal info added
The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities
We study the long term evolution of the distance between two Keplerian
confocal trajectories in the framework of the averaged restricted 3-body
problem. The bodies may represent the Sun, a solar system planet and an
asteroid. The secular evolution of the orbital elements of the asteroid is
computed by averaging the equations of motion over the mean anomalies of the
asteroid and the planet. When an orbit crossing with the planet occurs the
averaged equations become singular. However, it is possible to define piecewise
differentiable solutions by extending the averaged vector field beyond the
singularity from both sides of the orbit crossing set. In this paper we improve
the previous results, concerning in particular the singularity extraction
technique, and show that the extended vector fields are Lipschitz-continuous.
Moreover, we consider the distance between the Keplerian trajectories of the
small body and of the planet. Apart from exceptional cases, we can select a
sign for this distance so that it becomes an analytic map of the orbital
elements near to crossing configurations. We prove that the evolution of the
'signed' distance along the averaged vector field is more regular than that of
the elements in a neighborhood of crossing times. A comparison between averaged
and non-averaged evolutions and an application of these results are shown using
orbits of near-Earth asteroids.Comment: 29 pages, 8 figure
Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation
Abstract: Objective To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation. Methods: Male Wistar rats were divided into sensory-deprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8-10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection. Results: PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups. Conclusion: These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex
Long-term perturbations due to a disturbing body in elliptic inclined orbit
In the current study, a double-averaged analytical model including the action
of the perturbing body's inclination is developed to study third-body
perturbations. The disturbing function is expanded in the form of Legendre
polynomials truncated up to the second-order term, and then is averaged over
the periods of the spacecraft and the perturbing body. The efficiency of the
double-averaged algorithm is verified with the full elliptic restricted
three-body model. Comparisons with the previous study for a lunar satellite
perturbed by Earth are presented to measure the effect of the perturbing body's
inclination, and illustrate that the lunar obliquity with the value 6.68\degree
is important for the mean motion of a lunar satellite. The application to the
Mars-Sun system is shown to prove the validity of the double-averaged model. It
can be seen that the algorithm is effective to predict the long-term behavior
of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged
model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure
Aspects of the planetary Birkhoff normal form
The discovery in [G. Pinzari. PhD thesis. Univ. Roma Tre. 2009], [L.
Chierchia and G. Pinzari, Invent. Math. 2011] of the Birkhoff normal form for
the planetary many--body problem opened new insights and hopes for the
comprehension of the dynamics of this problem. Remarkably, it allowed to give a
{\sl direct} proof of the celebrated Arnold's Theorem [V. I. Arnold. Uspehi
Math. Nauk. 1963] on the stability of planetary motions. In this paper, using a
"ad hoc" set of symplectic variables, we develop an asymptotic formula for this
normal form that may turn to be useful in applications. As an example, we
provide two very simple applications to the three-body problem: we prove a
conjecture by [V. I. Arnold. cit] on the "Kolmogorov set"of this problem and,
using Nehoro{\v{s}}ev Theory [Nehoro{\v{s}}ev. Uspehi Math. Nauk. 1977], we
prove, in the planar case, stability of all planetary actions over
exponentially-long times, provided mean--motion resonances are excluded. We
also briefly discuss perspectives and problems for full generalization of the
results in the paper.Comment: 44 pages. Keywords: Averaging Theory, Birkhoff normal form,
Nehoro{\v{s}}ev Theory, Planetary many--body problem, Arnold's Theorem on the
stability of planetary motions, Properly--degenerate kam Theory, steepness.
Revised version, including Reviewer's comments. Typos correcte
The Multiple Origin of Blue Straggler Stars: Theory vs. Observations
In this chapter we review the various suggested channels for the formation
and evolution of blue straggler stars (BSSs) in different environments and
their observational predictions. These include mass transfer during binary
stellar evolution - case A/B/C and D (wind Roche-lobe overflow) mass transfer,
stellar collisions during single and binary encounters in dense stellar
cluster, and coupled dynamical and stellar evolution of triple systems. We also
explore the importance of the BSS and binary dynamics in stellar clusters. We
review the various observed properties of BSSs in different environments (halo
and bulge BSSs, BSSs in globular clusters and BSSs in old open clusters), and
compare the current observations with the theoretical predictions for BSS
formation. We try to constrain the likely progenitors and processes that play a
role in the formation of BSSs and their evolution. We find that multiple
channels of BSS formation are likely to take part in producing the observed
BSSs, and we point out the strengths and weaknesses of each the formation
channel in respect to the observational constraints. Finally we point out
directions to further explore the origin of BSS, and highlight eclipsing binary
BSSs as important observational tool.Comment: Chapter 11, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Rossiter-McLaughlin Effect Measurements for WASP-16, WASP-25 and WASP-31
We present new measurements of the Rossiter-McLaughlin (RM) effect for three
WASP planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis
of their complete sets of photometric and spectroscopic data. We find a low
amplitude RM effect for WASP-16 (Teff = 5700 \pm 150K), suggesting that the
star is a slow rotator and thus of an advanced age, and obtain a projected
alignment angle of lambda = -4.2 degrees +11.0 -13.9. For WASP-25 (Teff =
5750\pm100K) we detect a projected spin-orbit angle of lambda = 14.6 degrees
\pm6.7. WASP-31 (Teff = 6300\pm100K) is found to be well-aligned, with a
projected spin-orbit angle of lambda = 2.8degrees \pm3.1. A circular orbit is
consistent with the data for all three systems, in agreement with their
respective discovery papers. We consider the results for these systems in the
context of the ensemble of RM measurements made to date. We find that whilst
WASP-16 fits the hypothesis of Winn et al. (2010) that 'cool' stars (Teff <
6250K) are preferentially aligned, WASP-31 has little impact on the proposed
trend. We bring the total distribution of the true spin-orbit alignment angle,
psi, up to date, noting that recent results have improved the agreement with
the theory of Fabrycky & Tremaine (2007) at mid-range angles. We also suggest a
new test for judging misalignment using the Bayesian Information Criterion,
according to which WASP-25 b's orbit should be considered to be aligned.Comment: 20 pages, 14 tables, 10 figures. Accepted to MNRA
Three-Dimensional Regulation of Radial Glial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes
Lis1-Nde1 integrates cerebral cortical neurogenesis with neuronal migration by stabilizing the basal-lateral surface of radial glial cells
- …