89 research outputs found

    Precision medicine in cancer: Challenges and recommendations from an EU-funded cervical cancer biobanking study

    Get PDF
    Background:Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality worldwide. CC pathogenesis is triggered when human papillomavirus (HPV) inserts into the genome, resulting in tumour suppressor gene inactivation and oncogene activation. Collecting tumour and blood samples is critical for identifying these genetic alterations.Methods:BIO-RAIDs is the first prospective molecular profiling clinical study to include a substantial biobanking effort that used uniform high-quality standards and control of samples. In this European Union (EU)-funded study, we identified the challenges that were impeding the effective implementation of such a systematic and comprehensive biobanking effort.Results:The challenges included a lack of uniform international legal and ethical standards, complexities in clinical and molecular data management, and difficulties in determining the best technical platforms and data analysis techniques. Some difficulties were encountered by all investigators, while others affected only certain institutions, regions, or countries.Conclusions:The results of the BIO-RAIDs programme highlight the need to facilitate and standardise regulatory procedures, and we feel that there is also a need for international working groups that make recommendations to regulatory bodies, governmental funding agencies, and academic institutions to achieve a proficient biobanking programme throughout EU countries. This represents the first step in precision medicine

    Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial

    Get PDF
    Background: Microalbuminuria is an early sign of kidney disease in people with diabetes and indicates increased risk of cardiovascular disease. We tested whether a urinary proteomic risk classifier (CKD273) score was associated with development of microalbuminuria and whether progression to microalbuminuria could be prevented with the mineralocorticoid receptor antagonist spironolactone. Methods: In this multicentre, prospective, observational study with embedded randomised controlled trial (PRIORITY), we recruited people with type 2 diabetes, normal urinary albumin excretion, and preserved renal function from 15 specialist centres in ten European countries. All participants (observational cohort) were tested with the CKD273 classifier and classified as high risk (CKD273 classifier score >0·154) or low risk (≤0·154). Participants who were classified as high risk were entered into a randomised controlled trial and randomly assigned (1:1), by use of an interactive web-response system, to receive spironolactone 25 mg once daily or matched placebo (trial cohort). The primary endpoint was development of confirmed microalbuminuria in all individuals with available data (observational cohort). Secondary endpoints included reduction in incidence of microalbuminuria with spironolactone (trial cohort, intention-to-treat population) and association between CKD273 risk score and measures of impaired renal function based on estimated glomerular filtration rate (eGFR; observational cohort). Adverse events (particularly gynaecomastia and hyperkalaemia) and serious adverse events were recorded for the intention-to-treat population (trial cohort). This study is registered with the EU Clinical Trials Register (EudraCT 20120-004523-4) and ClinicalTrials.gov (NCT02040441) and is completed. Findings: Between March 25, 2014, and Sept 30, 2018, we enrolled and followed-up 1775 participants (observational cohort), 1559 (88%) of 1775 participants had a low-risk urinary proteomic pattern and 216 (12%) had a high-risk pattern, of whom 209 were included in the trial cohort and assigned to spironolactone (n=102) or placebo (n=107). The overall median follow-up time was 2·51 years (IQR 2·0–3·0). Progression to microalbuminuria was seen in 61 (28%) of 216 high-risk participants and 139 (9%) of 1559 low-risk participants (hazard ratio [HR] 2·48, 95% CI 1·80–3·42; p<0·0001, after adjustment for baseline variables of age, sex, HbA1c, systolic blood pressure, retinopathy, urine albumin-to-creatinine ratio [UACR], and eGFR). Development of impaired renal function (eGFR <60 mL/min per 1·73 m2) was seen in 48 (26%) of 184 high-risk participants and 119 (8%) of 1423 low-risk participants (HR 3·50; 95% CI 2·50–4·90, after adjustment for baseline variables). A 30% decrease in eGFR from baseline (post-hoc endpoint) was seen in 42 (19%) of 216 high-risk participants and 62 (4%) of 1559 low-risk participants (HR 5·15, 95% CI 3·41–7·76; p<0·0001, after adjustment for basline eGFR and UACR). In the intention-to-treat trial cohort, development of microalbuminuria was seen in 35 (33%) of 107 in the placebo group and 26 (25%) of 102 in the spironolactone group (HR 0·81, 95% CI 0·49–1·34; p=0·41). In the safety analysis (intention-to-treat trial cohort), events of plasma potassium concentrations of more than 5·5 mmol/L were seen in 13 (13%) of 102 participants in the spironolactone group and four (4%) of 107 participants in the placebo group, and gynaecomastia was seen in three (3%) participants in the spironolactone group and none in the placebo group. One patient died in the placebo group due to a cardiac event (considered possibly related to study drug) and one patient died in the spironolactone group due to cancer, deemed unrelated to study drug. Interpretation: In people with type 2 diabetes and normoalbuminuria, a high-risk score from the urinary proteomic classifier CKD273 was associated with an increased risk of progression to microalbuminuria over a median of 2·5 years, independent of clinical characteristics. However, spironolactone did not prevent progression to microalbuminuria in high-risk patients. Funding: European Union Seventh Framework Programme

    Genetic markers and phosphoprotein forms of beta-catenin pβ-Cat552 and pβ-Cat675 are prognostic biomarkers of cervical cancer

    Get PDF
    BACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality world wide and constitutes the third most common malignancy in women. The RAIDs consortium (http://www. raids-fp7.eu/) conducted a prospective European study [BioRAIDs (NCT02428842)] with the objective to stratify CC patients for innovative treatments. A “metagene” of genomic markers in the PI3K pathway and epigenetic regulators had been previously associated with poor outcome [2]. METHODS: To detect new, more specific, targets for treatment of patients who resist standard chemo-radiation, a high-dimensional Cox model was applied to define dominant molecular variants, copy number variations, and reverse phase protein arrays (RPPA). FINDINGS: Survival analysis on 89 patients with all omics data available, suggested loss-of-function (LOF) or activating molecular alterations in nine genes to be candidate biomarkers for worse prognosis in patients treated by chemo-radiation while LOF of ATRX, MED13 as well as CASP8 were associated with better prognosis. When protein expression data by RPPA were factored in, the supposedly low molecula

    Energy gain of wetted-foam implosions with auxiliary heating for inertial fusion studies

    Get PDF
    Low convergence ratio implosions (where wetted-foam layers are used to limit capsule convergence, achieving improved robustness to instability growth) and auxiliary heating (where electron beams are used to provide collisionless heating of a hotspot) are two promising techniques that are being explored for inertial fusion energy applications. In this paper, a new analytic study is presented to understand and predict the performance of these implosions. Firstly, conventional gain models are adapted to produce gain curves for fixed convergence ratios, which are shown to well-describe previously simulated results. Secondly, auxiliary heating is demonstrated to be well understood and interpreted through the burn-up fraction of the deuterium-tritium fuel, with the gradient of burn-up with respect to burn-averaged temperature shown to provide good qualitative predictions of the effectiveness of this technique for a given implosion. Simulations of auxiliary heating for a range of implosions are presented in support of this and demonstrate that this heating can have significant benefit for high gain implosions, being most effective when the burn-averaged temperature is between 5 and 20 keV

    Conserved expression and functions of PDE4 in rodent and human heart

    Get PDF
    PDE4 isoenzymes are critical in the control of cAMP signaling in rodent cardiac myocytes. Ablation of PDE4 affects multiple key players in excitation–contraction coupling and predisposes mice to the development of heart failure. As little is known about PDE4 in human heart, we explored to what extent cardiac expression and functions of PDE4 are conserved between rodents and humans. We find considerable similarities including comparable amounts of PDE4 activity expressed, expression of the same PDE4 subtypes and splicing variants, anchoring of PDE4 to the same subcellular compartments and macromolecular signaling complexes, and downregulation of PDE4 activity and protein in heart failure. The major difference between the species is a fivefold higher amount of non-PDE4 activity in human hearts compared to rodents. As a consequence, the effect of PDE4 inactivation is different in rodents and humans. PDE4 inhibition leads to increased phosphorylation of virtually all PKA substrates in mouse cardiomyocytes, but increased phosphorylation of only a restricted number of proteins in human cardiomyocytes. Our findings suggest that PDE4s have a similar role in the local regulation of cAMP signaling in rodent and human heart. However, inhibition of PDE4 has ‘global’ effects on cAMP signaling only in rodent hearts, as PDE4 comprises a large fraction of the total cardiac PDE activity in rodents but not in humans. These differences may explain the distinct pharmacological effects of PDE4 inhibition in rodent and human hearts

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Nitric Oxide and Vascular Disease

    No full text
    corecore