151 research outputs found

    Collisional shifts in optical-lattice atom clocks

    Get PDF
    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply-occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of π\pi between the Ramsey driving fields in adjacent sites. This configuration suppresses site to site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.Comment: 15 pages, 11 figure

    Electrodynamic trapping of spinless neutral atoms with an atom chip

    Full text link
    Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly 10210^2 strontium atoms in the 1S0^1S_0 state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.Comment: 4pages, 4figures, to appear in Phys. Rev. Let

    Dynamical matrix of two-dimensional electron crystals

    Full text link
    In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to get the dynamical matrix of these crystals from a calculation of the density response function performed in the Generalized Random Phase Approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11 postscripts figure

    Controlling the cold collision shift in high precision atomic interferometry

    Get PDF
    We present here a new method based on a transfer of population by adiabatic passage that allows to prepare cold atomic samples with a well defined ratio of atomic density and atom number. This method is used to perform a measurement of the cold collision frequency shift in a laser cooled cesium clock at the percent level, which makes the evaluation of the cesium fountains accuracy at the 101610^{-16} level realistic. With an improved set-up, the adiabatic passage would allow measurements of atom number-dependent phase shifts at the 10310^{-3} level in high precision experiments.Comment: 4 pages, 3 figures, 2 table

    An Optical Lattice Clock with Spin-polarized 87Sr Atoms

    Full text link
    We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S0-3P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional accuracy of 2.6 10^{-15}, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 μ\muK to 10 μ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure

    New Limits to the Drift of Fundamental Constants from Laboratory Measurements

    Get PDF
    We have remeasured the absolute 1S1S-2S2S transition frequency νH\nu_{\rm {H}} in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (29±57)(-29\pm 57) Hz for the drift of νH\nu_{\rm {H}} with respect to the ground state hyperfine splitting νCs\nu_{{\rm {Cs}}} in 133^{133}Cs. Combining this result with the recently published optical transition frequency in 199^{199}Hg+^+ against νCs\nu_{\rm {Cs}} and a microwave 87^{87}Rb and 133^{133}Cs clock comparison, we deduce separate limits on α˙/α=(0.9±2.9)×1015\dot{\alpha}/\alpha = (-0.9\pm 2.9)\times 10^{-15} yr1^{-1} and the fractional time variation of the ratio of Rb and Cs nuclear magnetic moments μRb/μCs\mu_{\rm {Rb}}/\mu_{\rm {Cs}} equal to (0.5±1.7)×1015(-0.5 \pm 1.7)\times 10^{-15} yr1^{-1}. The latter provides information on the temporal behavior of the constant of strong interaction.Comment: 4 pages, 3 figures, LaTe

    Optical Clocks in Space

    Get PDF
    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.Comment: Proc. III International Conference on Particle and Fundamental Physics in Space (SpacePart06), Beijing 19 - 21 April 2006, to appear in Nucl. Phys.

    Mutations in SRD5B1 (AKR1D1), the gene encoding δ 4-3-oxosteroid 5β-reductase, in hepatitis and liver failure in infancy

    Get PDF
    Background: A substantial group of patients with cholestatic liver disease in infancy excrete, as the major urinary bile acids, the glycine and taurine conjugates of 7α-hydroxy-3-oxo-4-cholenoic acid and 7α,12α -dihydroxy-3-oxo-4-cholenoic acid. It has been proposed that some (but not all) of these have mutations in the gene encoding Δ4-3-oxosteroid 5β-reductase (SRD5B1; AKR1D1, OMIM 604741). Aims: Our aim was to identify mutations in the SRD5B1 gene in patients in whom chenodeoxycholic acid and cholic acid were absent or present at low concentrations in plasma and urine, as these seemed strong candidates for genetic 5β-reductase deficiency. Patients and subjects: We studied three patients with neonatal onset cholestatic liver disease and normal γ-glutamyl transpeptidase in whom 3-oxo-Δ4 bile acids were the major bile acids in urine and plasma and saturated bile acids were at low concentration or undetectable. Any base changes detected in SRD5B1 were sought in the parents and siblings and in 50 ethnically matched control subjects. Methods: DNA was extracted from blood and the nine exons of SRD5B1 were amplified and sequenced. Restriction enzymes were used to screen the DNA of parents, siblings, and controls. Results: Mutations in the SRD5B1 gene were identified in all three children. Patient MS was homozygous for a missense mutation (662 C>T) causing a Pro198Leu amino acid substitution; patient BH was homozygous for a single base deletion (511 delT) causing a frame shift and a premature stop codon in exon 5; and patient RM was homozygous for a missense mutation (385 C>T) causing a Leu106Phe amino acid substitution. All had liver biopsies showing a giant cell hepatitis; in two, prominent extramedullary haemopoiesis was noted. MS was cured by treatment with chenodeoxycholic acid and cholic acid; BH showed initial improvement but then deteriorated and required liver transplantation; RM had advanced liver disease when treatment was started and also progressed to liver failure. Conclusions: Analysis of blood samples for SRD5B1 mutations can be used to diagnose genetic 5β-reductase deficiency and distinguish these patients from those who have another cause of 3-oxo-Δ4 bile aciduria, for example, severe liver damage. Patients with genetic 5β-reductase deficiency may respond well to treatment with chenodeoxycholic acid and cholic acid if liver disease is not too advanced

    Long-distance frequency transfer over an urban fiber link using optical phase stabilization

    Full text link
    We transferred the frequency of an ultra-stable laser over 86 km of urban fiber. The link is composed of two cascaded 43-km fibers connecting two laboratories, LNE-SYRTE and LPL in Paris area. In an effort to realistically demonstrate a link of 172 km without using spooled fiber extensions, we implemented a recirculation loop to double the length of the urban fiber link. The link is fed with a 1542-nm cavity stabilized fiber laser having a sub-Hz linewidth. The fiber-induced phase noise is measured and cancelled with an all fiber-based interferometer using commercial off the shelf pigtailed telecommunication components. The compensated link shows an Allan deviation of a few 10-16 at one second and a few 10-19 at 10,000 seconds
    corecore