1,486 research outputs found

    Photoluminescence in yttria-stabilized zirconia of aging effects

    Get PDF

    Dynamics of Spontaneous Magnetization Reversal in Exchange Biased Heterostructures

    Full text link
    The dependence of thermally induced spontaneous magnetization reversal on time-dependent cooling protocols was studied. Slower cooling and longer waiting close to the N\`{e}el temperature of the antiferromagnet (TNT_N) enhances the magnetization reversal. Cycling the temperature around TNT_N leads to a thermal training effect under which the reversal magnitude increases with each cycle. These results suggest that spontaneous magnetization reversal is energetically favored, contrary to our present understanding of positive exchange bias

    A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury

    Get PDF
    Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1(flox/flox)). GFAP-Cre;Rac1(flox/flox) (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G(1) to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury

    Characteristics of Japanese wrestlers with respect to function and structure of limbs

    Get PDF
    It is well known that hypertrophy and strength gain of the human skeletal muscle are induced by muscle training. It has also been shown that the training effect on size and strength of the skeletal muscle are altered the different athletic training protocols (1, 4). From these findings, it seems possible that wrestlers possess the hypertrophied muscle and stronger muscle strength by specific training. In the present study, we assess the functional and structural characteristics of the skeletal muscle in Japanese wrestlers

    An explanatory model for food-web structure and evolution

    Full text link
    Food webs are networks describing who is eating whom in an ecological community. By now it is clear that many aspects of food-web structure are reproducible across diverse habitats, yet little is known about the driving force behind this structure. Evolutionary and population dynamical mechanisms have been considered. We propose a model for the evolutionary dynamics of food-web topology and show that it accurately reproduces observed food-web characteristic in the steady state. It is based on the observation that most consumers are larger than their resource species and the hypothesis that speciation and extinction rates decrease with increasing body mass. Results give strong support to the evolutionary hypothesis.Comment: 16 pages, 3 figure

    Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups

    No full text
    Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies

    Vectorial Control of Magnetization by Light

    Get PDF
    Coherent light-matter interactions have recently extended their applications to the ultrafast control of magnetization in solids. An important but unrealized technique is the manipulation of magnetization vector motion to make it follow an arbitrarily designed multi-dimensional trajectory. Furthermore, for its realization, the phase and amplitude of degenerate modes need to be steered independently. A promising method is to employ Raman-type nonlinear optical processes induced by femtosecond laser pulses, where magnetic oscillations are induced impulsively with a controlled initial phase and an azimuthal angle that follows well defined selection rules determined by the materials' symmetries. Here, we emphasize the fact that temporal variation of the polarization angle of the laser pulses enables us to distinguish between the two degenerate modes. A full manipulation of two-dimensional magnetic oscillations is demonstrated in antiferromagnetic NiO by employing a pair of polarization-twisted optical pulses. These results have lead to a new concept of vectorial control of magnetization by light
    corecore