125 research outputs found

    Tomato susceptibility to Alternaria stem canker:Parameters involved in host-specific toxin-induced leaf necrosis

    Get PDF
    AAL-toxin causes severe necrosis in leaves of susceptible tomato cultivars at nanomolar concentrations. In resistant tomato cultivars harbouring the semi-dominant Alternaria stem canker resistance locus necrosis is also observed, however at much higher toxin concentrations, in both lines the percentage of the leaf area exhibiting necrosis is dependent on toxin concentration and on length of toxin exposure. However, at the same toxin concentration, periods of toxin exposure resulting in similar necrosis are much longer for the resistant than for the susceptible tomato. It was demonstrated that toxin uptake in the leaves does not imply toxin uptake in the cells since a discrepancy was observed between death of protoplasts, isolated from leaves cut for protoplast isolation immediately after incubation on AAL-toxin and necrosis in leaves when further incubated on water. However, when after exposure to AAL-toxin leaves were further incubated on water for 24 h before they were cut for protoplast isolation, a correlation was found between leaf necrosis and death of protoplasts. This suggests that further transport is needed in leaves after toxin uptake, bringing toxin to all the cells, that cannot occur in leaves cut for protoplast isolation. Light plays an important role in AAL-toxin induced necrosis and it was shown that length of light exposure controls necrosis development like toxin concentration and length of toxin exposure. The product of these 3 parameters can provide a good hint to predict the extent of leaf necrosis. The effect of light might be restricted to differentiated leaf tissue, since it was not observed in callus tissue

    Influence of personalized extended interval dosing on the natalizumab wearing-off effect - a sub-study of the NEXT-MS trial

    Get PDF
    Background and objectives: Wearing-off symptoms during natalizumab treatment in multiple sclerosis are characterized by an increase of MS-related symptoms prior to natalizumab administration. The influence of extended interval dosing (EID) on wearing-off symptoms are important to consider, as this might cause hesitancy in initiating or continuing EID. Methods: Participants of the NEXT-MS trial, in which treatment intervals are adjusted based on drug concentrations, were divided into two groups: an extended group containing participants with at least one week of additional interval extension, and a group with a fixed interval during the trial (range 4–7 weeks). Changes in the occurrence, frequency, onset, and severity of wearing-off symptoms were evaluated. Results: 255 participants were included (extended group n = 171, fixed group n = 84). The odds on occurrence of wearing-off symptoms in the extended group did not increase after extending the treatment interval. Additional analyses for frequency, onset, and severity of wearing-off symptoms showed no changes over time. Mean decrease in natalizumab drug concentration did not influence the frequency of wearing-off symptoms. Discussion: Wearing-off symptoms were not reinforced by further extending the natalizumab interval. Wearing-off symptoms might increase in a minority of patients after EID, although our data support the view that wearing-off symptoms appear to be unrelated to the decrease in natalizumab trough drug concentrations.</p

    Natural Variation in Arabidopsis thaliana Revealed a Genetic Network Controlling Germination Under Salt Stress

    Get PDF
    Plant responses to environmental stresses are polygenic and complex traits. In this study quantitative genetics using natural variation in Arabidopsis thaliana was used to investigate the genetic architecture of plant responses to salt stress. Eighty seven A. thaliana accessions were screened and showed a large variation for root development and seed germination under 125 and 200 mM NaCl, respectively. Twenty two quantitative trait loci for these traits have been detected by phenotyping two recombinants inbred line populations, Sha x Col and Sha x Ler. Four QTLs controlling germination under salt were detected in the Sha x Col population. Interestingly, only one allelic combination at these four QTLs inhibits germination under salt stress, implying strong epistatic interactions between them. In this interacting context, we confirmed the effect of one QTL by phenotyping selected heterozygous inbred families. We also showed that this QTL is involved in the control of germination under other stress conditions such as KCl, mannitol, cold, glucose and ABA. Our data highlights the presence of a genetic network which consists of four interacting QTLs and controls germination under limiting environmental conditions

    Randomised phase 3 study of adjuvant chemotherapy with or without nadroparin in patients with completely resected non-small-cell lung cancer:the NVALT-8 study

    Get PDF
    Background: Retrospective studies suggest that low molecular weight heparin may delay the development of metastasis in patients with resected NSCLC. Methods: Multicentre phase 3 study with patients with completely resected NSCLC who were randomised after surgery to receive chemotherapy with or without nadroparin. The main exclusion criteria were R1/2 and wedge/segmental resection. FDG-PET was required. The primary endpoint was recurrence-free survival (RFS). Results: Among 235 registered patients, 202 were randomised (nadroparin: n = 100; control n = 102). Slow accrual enabled a decrease in the number of patients needed from 600 to 202, providing 80% power to compare RFS with 94 events (α = 0.05; 2-sided). There were no differences in bleeding events between the two groups. The median RFS was 65.2 months (95% CI, 36—NA) in the nadroparin arm and 37.7 months (95% CI, 22.7—NA) in the control arm (HR 0.77 (95% CI, 0.53–1.13, P = 0.19). FDG-PET SUVmax ≥10 predicted a greater likelihood of recurrence in the first year (HR 0.48, 95% CI 0.22–0.9, P = 0.05). Conclusions: Adjuvant nadroparin did not improve RFS in patients with resected NSCLC. In this study, a high SUVmax predicted a greater likelihood of recurrence in the first year. Clinical trial registration: Netherlands Trial registry: NTR1250/1217

    ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport

    Get PDF
    Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE), i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1) gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid) was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR) spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components

    New ABA-Hypersensitive Arabidopsis Mutants Are Affected in Loci Mediating Responses to Water Deficit and Dickeya dadantii Infection

    Get PDF
    On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway

    A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    Get PDF
    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2−, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses

    Photo-addition of trichloromethanesulfenyl chloride to carbon-carbon double bonds

    No full text
    The CL3CO radical in the photoaddn. of CL2CSCl to olefins isa chain-carrying radical. The structures of the adducts with styrene, propylene, allyl chloride, methallyl chloride, and allyl bromide are consistent with this conclusion, and the mechanism is given

    Oxaheptatrienyl anion coupling constants and bond orders

    No full text
    Reaction of sorb aldehyde with KNH2 in liq. ammonia yields, as revealed by NMR spectroscopy, the stable oxaheptatrienyl anion. A linear relation between coupling consts. and bond orders is given. [on SciFinder (R)

    Magnetic non-equivalence of protons in a sulfinyl carbanion

    No full text
    The 100 MHz. 1H N.M.R. spectra of Ph2C-R (I) were recorded in liq. NH3 at various temps. For I (R = H) the 2 para protons appeared as 1 triplet at temps. -20 to -60 Deg; the ortho protons appeared as 1 singlet at -20 Deg, but as 2 doublets at -60 Deg as a result of hindered rotation about the C-1-C (aryl) bonds. Spectra of I (R = MeS or MeSO2) were temp. independent and indicate free rotation about these bonds, -20 to -60 Deg. At -20 Deg, protons of I (R = MeSO) gave rise to a 4:4:2 pattern. With decreasing temp., these signals broadened, then sharpened again. At -73 Deg, the para protons gave rise to 2 triplets (coupling const. J = 7.2 Hz.) of triplets (J = 1.2 Hz.) with chem. shifts 6.34 and 6.62 ppm. The nonequivalence of the para protons at the lower temps. indicates that the two rings have different amts. of neg. charge which may be caused by different electrostatic interactions or by different torsions about the C-1-C (aryl) bonds. [on SciFinder (R)
    • …
    corecore