934 research outputs found

    Phaseolus vulgaris leuco-agglutinin immunohistochemistry. A comparison between autoradiographic and lectin tracing of neuronal efferents

    Get PDF
    The autoradiographic pattern of anterograde labeling as a result from injections with tritiated amino acids is compared to the labeling of efferents with Phaseolus vulgaris leuco-agglutinin after lectin injections in the same nucleus visualized by immunohistochemical methods. This comparison is made for efferents from the ventromedial hypothalamic nucleus to the amygdaloid body.

    Quantification of the risk of Phytophthora dieback in The Greater Blue Mountains World Heritage area

    Get PDF
    Biological invasions exert great pressure on natural ecosystems and conservation areas, the latter of which have been established to conserve biodiversity. The presence of invasive species in natural ecosystems disrupts evolutionary processes, alters species abundance and can potentially lead to extinction (Mack et al., 2000; Crowl et al., 2008). When an invasive species is the cause of plant disease, the potential for that pathogen to survive in a new environment and the expectation of the impacts it may cause, can be estimated from locations where it already occurs. Understanding the dynamics of disease is important for management and research alike, and will hopefully make way for a proactive rather than reactive response. Disease in natural Australian ecosystems caused by the invasive species Phytophthora cinnamomi has been recognised for nearly 100 years (Newhook and Podger, 1972); its devastating impacts have lead to the disease syndrome, Phytophthora dieback, being classified as a Key Threatening Process by the Australian Federal Government (Commonwealth of Australia, 2005). Yet, the assessment of potential disease establishment, that is, disease risk, is limited. This remains true for the globally significant Greater Blue Mountains World Heritage Area (GBMWHA) in New South Wales, a centre of plant and animal conservation. Not only is the understanding of the pathogen distribution limited, so too is knowledge of the potential impacts on flora and the influence climate change may have on disease expression. Management of Phytophthora dieback in the GBMWHA is made increasingly complex by the rugged and remote nature of much of the World Heritage Area, as well as competing demands from tourism, recreation and the impacts of fire and other introduced species. This study aims to address some of these complexities by establishing the suitability of the GBMWHA to P. cinnamomi, its current distribution and the potential for disease. Additionally, with the difficulty of accessing much of the GBMWHA and the risk of disease transmission in mind, an alternate approach to disease identification is trialed. The first task of this project, was concerned with understanding the potential distribution of P. cinnamomi within the GBMWHA using mechanistic modelling and information on the pathogen’s ecology. Most of the GBMHWA was found to be suitable, leading to the acceptance of the first hypothesis that the climatic and topographic conditions of the GBMWHA are conducive to P. cinnamomi establishment. The most conducive areas were characterised by high soil wetness, high rainfall and moderate temperatures, while the areas least conducive were conversely hotter and drier. Although iv the model appeared to overpredict into areas the pathogen was not found, increasing distribution risk was associated with increasing isolations, possibly indicating that the pathogen is yet to reach its potential niche. The modelled distribution of P. cinnamomi was then used to inform a field investigation to determine the actual distribution in the GBMWHA and assess the impact of the pathogen on vegetation communities and individuals. As an invasive species, the distribution of P. cinnamomi was hypothesised to be primarily found in locations with high anthropogenic activity; however it was isolated extensively from remote areas, leading to the rejection of this hypothesis. Disease was never the less expected, albeit sporadic, as per disease expression in other vegetation communities in New South Wales (Arentz, 1974; Walsh et al., 2006; Howard, 2008). Heathland communities that often have a higher incidence of disease (McDougall and Summerell, 2003), had a high rate of pathogen isolation, as well as clear indications of disease in the GBMWHA. Additionally, freshwater wetlands, many of which are endangered ecological communities under Commonwealth and State legislation, had a high rate of pathogen isolation also. The results collected during the field work were then utilised to assess the risk of Phytophthora dieback occurring in the GBMWHA within the context of the disease triangle. The distribution of P. cinnamomi was combined with models of over 130 individual host species to produce a spatially explicit model, quantifying the risk of disease. That a large portion of the GBMWHA is at risk of Phytophthora dieback was not the case, and as such this hypothesis was rejected. Although much of the World Heritage Area had a least some level of risk, greatest risk was associated with a few small areas that occurred at higher elevations with suitable rainfall and temperature conditions. Unfortunately, many of these locations were associated with high levels of tourism and recreation, highlighting the potential for anthropogenic dispersal of P. cinnamomi into, around and out of the GBMWHA. Disease itself has a temporal element which cannot be quantified in one set of field results and as disease spreads the results become outdated quickly (O'Gara et al., 2005). Field-based assessments of disease are expensive and time consuming, and in area as vast and rugged as the GBMWHA, difficult and potentially dangerous. Real-time information on the impacts of disease are therefore needed by land managers to efficiently deploy management strategies (O'Gara et al., 2005). Remote sensing offers an alternative means of assessment not requiring site entry. Vegetation condition can be assessed remotely in all manner of plant systems including the detection and quantification of disease. As such, it was hypothesised here that infection caused by P. cinnamomi could be detected fro

    The free process algebra generated by δ, ϵ and τ

    Get PDF
    AbstractWe establish the structure of the initial process algebra with additive and multiplicative identity elements and no article silent step

    The effects of a plyometric training program on the latency time of the quadriceps femoris and gastrocnemius short-latency responses

    Get PDF
    Aim: The purpose of this study was to determine if a plyometric training program can affect the latency time of the quadriceps femoris and gastrocnemius short-latency responses (SLRs) of the stretch reflex. Methods: Sixteen healthy subjects (12 female and 4 male) were randomly assigned to either a control or a plyometric training group. Maximum vertical jump height (VJ) and SLRs of both quadriceps femoris and gastrocnemius were measured before and after a four week plyometric training program. Results: Plyometric training significantly increased VJ (mean+/-SEM) by 2.38+/-0.45 cm (P\u3c0.05) and non-significantly decreased the latency time of the quadriceps femoris SLR (mean+/-SEM) 0.363+/-0.404 ms (P\u3e0.05) and gastrocnemius SLR (mean+/-SEM) 0.392+/-0.257 ms (P\u3e0.05). VJ results support the effectiveness of plyometric training for increasing VJ height. Conclusions:The non-significant changes in the latency time of the quadriceps femoris and gastrocnemius SLRs seen in the training group suggest that performance improvements following a four-week plyometric training program are not mediated by changes in the latency time of the short-latency stretch reflex

    Om Opvarmningsindretninger i Kapeller og Kirker

    Get PDF
    Intet resumé

    Decline of an Ecotone Forest: 50 Years of Demography in the Southern Boreal Forest

    Get PDF
    Variation in tree recruitment, mortality, and growth can alter forest community composition and structure. Because tree recruitment and mortality events are generally infrequent, long‐time scales are needed to confirm trends in forests. We performed a 50‐yr demographic census of a forest plot located on the southern edge of the Canadian boreal forest, a region currently experiencing forest die‐back in response to direct and indirect effects of recent severe droughts. Here, we show that over the last 30 yr biomass, basal area, growth, and recruitment have decreased along with a precipitous rise in mortality across the dominant tree species. The stand experienced periods of drought in combination with multiple outbreaks of forest tent caterpillar (Malacosoma disstria) and bark beetles. These insect disturbances interacted to increase mortality rates within the stand and decrease stand density. The interaction of endogenous and exogenous factors may shift forests in this region onto novel successional trajectories with the possibility of changes in regional vegetation type

    Reduction of microkinetic reaction models for reactor optimization exemplified for hydrogen production from methane

    Get PDF
    AbstractSustainable and efficient processes require optimal design and operating conditions. The determination of optimal process routes, however, is a challenging task. Either the models and underlying chemical reaction rate equations are not able to describe the process in a wide ranges of reaction conditions and thus limit the optimization space, or the models are too complex and numerically challenging to be used in dynamic optimization. To address this problem, in this contribution, a reduction technique for chemical reaction networks is proposed. It focuses on the sensitivity of the reaction kinetic model with respect to the removal of selected reaction steps and evaluates their significance for the prediction of the overall system behavior. The method is demonstrated for a C1 microkinetic model describing methane conversion to syngas on Rh/Al2O3 as catalyst. The original and the reduced microkinetic model show excellent qualitative and quantitative agreement. Subsequently, the reduced kinetic model is used for the optimization of a methane reformer to produce a hydrogen rich gas mixture as feed for polymer electrolyte membrane (PEM) fuel cell applications

    Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone

    Full text link
    The adrenal hormone corticosterone transcriptionally regulates responsive genes in the rodent hippocampus through nuclear mineralocorticoid and glucocorticoid receptors. Via this genomic pathway the hormone alters properties of hippocampal cells slowly and for a prolonged period. Here we report that corticosterone also rapidly and reversibly changes hippocampal signaling. Stress levels of the hormone enhance the frequency of miniature excitatory postsynaptic potentials in CA1 pyramidal neurons and reduce paired-pulse facilitation, pointing to a hormone-dependent enhancement of glutamate-release probability. The rapid effect by corticosterone is accomplished through a nongenomic pathway involving membrane-located receptors. Unexpectedly, the rapid effect critically depends on the classical mineralocorticoid receptor, as evidenced by the effectiveness of agonists, antagonists, and brain-specific inactivation of the mineralocorticoid but not the glucocorticoid receptor gene. Rapid actions by corticosterone would allow the brain to change its function within minutes after stress-induced elevations of corticosteroid levels, in addition to responding later through gene-mediated signaling pathways

    Gadolinium contrast agents: dermal deposits and potential effects on epidermal small nerve fibers

    Full text link
    Small fiber neuropathy (SFN) affects unmyelinated and thinly myelinated nerve fibers causing neuropathic pain with distal distribution and autonomic symptoms. In idiopathic SFN (iSFN), 30% of the cases, the underlying aetiology remains unknown. Gadolinium (Gd)-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI). However, side-effects including musculoskeletal disorders and burning skin sensations were reported. We investigated if dermal Gd deposits are more prevalent in iSFN patients exposed to GBCAs, and if dermal nerve fiber density and clinical parameters are likewise affected. 28 patients (19 females) with confirmed or no GBCA exposure were recruited in three German neuromuscular centers. ISFN was confirmed by clinical, neurophysiological, laboratory and genetic investigations. Six volunteers (two females) served as controls. Distal leg skin biopsies were obtained according to European recommendations. In these samples Gd was quantified by elemental bioimaging and intraepidermal nerve fibers (IENF) density via immunofluorescence analysis. Pain phenotyping was performed in all patients, quantitative sensory testing (QST) only in a subset (15 patients; 54%). All patients reported neuropathic pain, described as burning (n = 17), jabbing (n = 16) and hot (n = 11) and five QST scores were significantly altered. Compared to an equal distribution significantly more patients reported GBCA exposures (82%), while 18% confirmed no exposures. Compared to unexposed patients/controls significantly increased Gd deposits and lower z-scores of the IENF density were confirmed in exposed patients. QST scores and pain characteristics were not affected. This study suggests that GBCA exposure might alter IENF density in iSFN patients. Our results pave the road for further studies investigating the possible role of GBCA in small fiber damage, but more investigations and larger samples are needed to draw firm conclusions
    corecore