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J SPORTS MED PHYS Fl'I'NFSS 2009;49:35-43 

The effects of a plyometric training program on the latency time of 
the quadriceps femoris and gastrocnemius short-latency responses 

D. H. POTACH 1, D. KATSAVELIS 1, G. M. KARST 2, R. W. LATIN 1, N. STERGIOU 1, 3 

Aim. The purpose of this study was to determine if a plyome
tric training program can affect the latency time of the qua
driceps femoris and gastrocnemius short-latency responses 
(SLRs) of the stretc:h retlex. 
Metlwds. Sixteen healthy subjects (12 female and 4 male) were 
randomly assigned to either a control or a plyometric training 
group. Maximum vertical jump height (VJ) and SLRs of both 
quadriceps femoris and gastrocnemius were measured before 
and after a four week plyometric trabdng program. 
Results. Plyometric training signiftcantly increased VJ 
(mean:t:SEM) by 2.38:tOAS em (P<O.OS) and non-significantly 
decreased the latency time of the quadriceps femoris SLR 
(mean:tSEM) 0.363:i:OA04ms (P>O.OS) and gastrocnemius SLR 
(mean:SEM) 0.392:i:0.257 ms (P>O.OS). VJ results support the 
effectiveness of plyometric trabdng for increasing VJ height. 
Conc'buion. The non-significant changes in the latency time of the 
quadriceps femoris and gastrocnemius SLRs seen in the trai
ning group suggest that performance improvements following a 
four-week plyometric training program are not mediated by 
cluulges in the latency time of the short-latency stretch retlex. 

KEY WORDS: Electromyography -Muscle, skeletal- Reflex, stretch. 

'"X Jhen used correctly, plyometric training has con
VY sistently demonstrated the ability to improve 

athletic performance 1, 2 and the production of muscle 
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power.3-5 During the performance ofplyometric exer
cise, an individual's ability to produce muscular force 
is enhanced by means of two possible mechanisms.6 
Elastic energy is stored during an eccentric muscle 
action and released during a subsequent concentric 
muscle action, thereby increasing the total force pro
duction by naturally returning the muscle to its 
unstretched configuration.7-9 A secondary mechanism 
is the potentiation of the concentric muscle action, as 
well as the control of muscle stiffness by the stretch 
reflex.1o-1s 

Resistance training research has demonstrated that 
neural changes are a significant factor in the develop
ment of muscular strength following resistance train
ing programs.l6 Early changes in muscular strength 
may be largely accounted for by neural adaptations; as 
the resistance training program progresses, hypertro
phy gradually increases its contribution to increasing 
muscular strength.16 Further, these neural changes 
may be due to increased motoneuron excitability.17 
These alterations in the .. excitability" of the neural 
system following resistance training are important as 
they show that the neural system can, and does respond 
to resistance training. These alterations also illustrate 
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TABLE I.--Selected subject characteristics. 

Chanu:teriatic 
Plyometric (N.=8) Control (N.=S) 

Mean:tSD Range Mean:tSD Range 

Age (years) 
Height(cm) 
Weight (kg) 

25.38 ± 2.875 
175.50:!: 10.99 
70.09 ± 11.80 

20-30 
158.75-191.14 
56.25-90.72 

25.00±3.117 
172.48 :!: 8.05 
70.88 ± 20.97 

21-30 
161.29-186.06 
52.62-105.23 

that the neural system may adapt to different forms 
of training. Because the stretch reflex is involved dur
ing plyometric exercise,l0-14 it seems likely that stretch 
reflex adaptations may explain some of the increases 
in muscle power production that occur following ply
ometric training. 

There are essentially two phases to the stretch 
reflex, the short- and long-latency responses. The 
short-latency response (SLR) of the stretch reflex is 
mediated by the monosynaptic reflex arc while the 
long-latency response (LLR) primarily involves mul
tiple interneuronal synapses within the spinal cord. 
Research indicates that the LLR is involved during 
plyometric exercise. Kilani et al.14 found that anes
thetizing gamma motoneurons (a component of the 
LLR) significantly reduced vertical jump height, indi
cating the contribution of the LLR to the stretch short
ening cycle. Further, the LLR has shown a decreased 
sensitivity following a single bout of exercise involv
ing the stretch-shortening cycle.lS Since LLR affect 
vertical jump height performance and it fatigues dur
ing stretch-shortening cycle exercise, it is apparent 
that it is an essential component in potentiating con
centric muscle actions during plyometric exercise. 
Even though it is clear that the LLR plays an impor
tant role during plyometric exercise, little work has 
been done to determine the contribution of the SLR 
to plyometric exercise. 

The SLR component of the stretch reflex does exhib
it an adaptive plasticity to motor learning training.t9,20 
Perturbation training to upper extremity muscles sig
nificantly alters the SLR by increasing both ampli
tude and length of response. The adaptations to these 
rapid stretches, however, involved changes in ampli
tude of the SLR, rather than the time from stimula
tion to muscle activity.l9, 20 

Because agility and high-velocity training facilitate 
the muscle's reflexive response to a rapid stretch, lB. 

21-23 it seems logical that plyometric exercise may have 
a similar effect. To our know ledge, no research has 
examined the adaptation of the stretch reflex's SLR 

to plyometric training. Therefore, the primary pur
pose of this study was to determine if plyometric exer
cise training can shorten the latency time of the SLR 
of the quadriceps femoris and the gastrocnemius stretch 
reflexes. 

Materials and methods 

Subjects 

Sixteen college students (12 female, 4 male) vol
unteered to participate in this study. Subjects were 
without current or previous dominant lower extremi
ty knee or ankle injuries that required treatment by 
medical professionals. Exclusion criteria included a his
tory of injury to the ligaments or menisci of the knee, 
patellofemoraljoint injury, and chronic ankle sprains 
or Achilles tendon injury. Further, all subjects were 
free of other known or apparent neurologic, 
orthopaedic, or neuromuscular dysfunction. Based on 
recognized standards, 6, 24, zs subjects were participants 
in a resistance training program during the previous 12 
months. To eliminate the possible effects of previous 
plyometric training on the SLRs, plyometric training 
during the 12 months preceding the study excluded 
potential subjects. Subject characteristics are provid
ed in Table I. After approval from the University's 
Institutional Review Board, all subjects provided writ
ten informed consent and completed a PAR-Q 26 and 
Medical History questionnaire describing current activ
ity level and medical history prior to inclusion in the 
study. 

Subjects were randomly assigned to either the con
trol or plyometric group using a stratified randomiza
tion technique.21,2s Because it may be a factor in SLR 
determination, all subjects were stratified according to 
gender, with six females and two males in each group. 
Subjects were assigned to their respective groups using 
a table of random numbers and sampling without 
replacement. 
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tested muscles; a reference electrode was placed over 
the anterior surface of the ipsilateral forearm. 

Electrode placement was marked using palpable 
anatomical landmarks and recorded.31 Measurements 
of the electrode placement were used to make tem
plates for placement of the electrodes on both post
tests. To determine the QSLR, surface EMG electrodes 
were aligned along the longitudinal axis of the muscle 
fibers by orienting the electrodes oblique to the shaft 
of the femur at angles of 50 and 15 degrees for the 
vastus medialis and vastus lateralis, respectively.27,32 
During testing of the QSLR. the subjects sat with bilat
eral hip and knee joints in approximately 90° of flex
ion (Figure 1). For the GSLR tests, surface EMG elec
trodes were placed over the medial and lateral heads of 
gastrocnemius}! During testing of the GSLR, the sub
jects were prone with the tested hip in neutral and 
knee joint extended. The talocrual joint of the tested 
limb was held in neutral by a strap placed on the plan
tar surface of the foot and attached to a resistance via 
a rope and pulley (Figure 2). The resistance used to 
maintain talocrual neutral differed between subjects and 
was primarily dependent on the flexibility of a given 
subject's Achilles tendon. The required resistance for 
each subject was recorded during the initial pre-test and 
used during subsequent testing sessions. 

During all SLR tests, subjects closed their eyes to 
eliminate visual awareness and listened to standardized 
music to eliminate auditory awareness of the tendon 
stimulus. SLRs for each site were measured 10 times 
each; the mean latency of the 10 trials for each site 
(20 in total) was used for data analysis. These proce
dures were replicated for the second pre-test and both 
post-tests. 

Vertical jump testing 

The maximum vertical jump height for each sub
ject was measured during the second pre-test and dur
ing both post-tests using a Vertec (Sports Imports, 
Columbus, OH). VJ s were recorded to the nearest 0.5 
inch and converted to centimeters (em) for data analy
sis. The maximal reach height of each subject's dom
inant upper extremity (the upper extremity with which 
the subject reached during the VJ) was measured and 
each subject performed three countermovement VJs. 
VJ height was calculated by subtracting each subject's 
maximal upper extremity reach height from the max
imal height jumped. The highest VJ of the three trials 
was used for data analysis. 

TABLE II.-Plyometric training program. 

Week one 
Session 1: Plyometric Training (80 contacts) 

2 x 10* 2-foot ankle hop 
2 x 10 Standing jump-and-reach 
2 x 20 Single leg push-off ( 40.6 em) 
1 x 10 Front boxjwnp (40.6 em) 
1 x 10 Tuckjump with knees up 

Session 2: Plyometric Training (90 contacts) 
2 x 10 2-foot ankle hop 
2 x 10 Standing jump-and-reach 
1 x 20 Single leg push-off ( 40.6 em) 
2 x 10 Jump to box (40.6 em) 
1 x 10 Tuckjump with knees up 
1 x 10 Jump from box (40.6 em) 

Week two 
Session 3: Plyometric Training (120 contacts) 

2 x 10 2-foot side-to-side ankle hops 
2 x 10 Standing jump-and-reach 
2 x 20 Alt single leg push-off (40.6 em) 
2 x 10 Front boxjwnp (40.6 em) 
3 x 10 Tuck jump with knees up 
1 x 10 Depth jump (40.6em) 

Session 4: Plyometric Training (1 00 contacts) 
2 x 10 2-foot side-to-side over barrier 
2 x 10 Standing jump and reach 
1 x 20 Alt single leg push-off ( 40.6 em) 
2 x 10 Jump to box (55.9 em) 
1 x 10 Tuckjump with knees up 
2x10 Depthjump(40.6em) 

Week three 
Session 5: Plyometric Training (130 contacts) 

2 x 10 1-footanklehop overbanier 
3 x 10 Standing jump-and-reach 
2 x 10 Tuckjump with knees up 
3 x 10 Front boxjwnp (40.6 em) 
2 x 10 Depth jump (50.9 em) 
1 x 10 Squat depth jump (40.6 em) 

Session 6: Plyometric Training (140 contacts) 
2 x 10 Standing jump-and-reach 
2 x 20 Single leg push-off ( 40.6 em) 
2 x 10 Jump to box (71.1 em) 
3 x 10 Depth jump (50.9 em) 
2 x 10 Squat depth jump ( 40.6 em) 
2 x 10 Tuckjump with knees up 
1 x 10 Depthjwnp to second box (40.6 em) 

Week four 
Session 7: Plyometric Training (150 contacts) 

2 X 10 2-foot side-to-side over barrier 
2 x 10 Standing jump-and-reach 
2 x 20 Single leg push-off ( 40.6 em) 
2 x 10 Depth jump to second box (40.6 em) 
3 x 10 Depth jump (71.1 em) 
2 x 10 Squat depth jump (50.9 em) 

Session 8: Plyometric Training (130 contacts) 
3 x 10 1-footanklehop 
2 x 10 Standing jump and reach 
2 x 10 Front box jump (50.9 em) 
2 x 10 Tuckjump with knees up 
2 x 10 Depthjwnp (71.1 em) 
2 x 10 Depth jump to second box (40.6 em) 

•Indicates two sets of 10 repetitiQilll. 
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Plyometric training 

Following both pre-tests, the control group contin
ued their previous program of resistance and aerobic 
training for four weeks. The plyometric group con
tinued their respective exercise programs (which 
included both resistance and aerobic training) and par
ticipated for four weeks in a twice per week plyomet
ric exercise program designed to increase each subject's 
vertical jump (Table 11).24, 25 The control and plyo
metric groups were instructed not to alter their exercise 
training programs during the four-week period although 
increases in weight were allowed. All subjects com
pleted an exercise/injury log to monitor activities dur
ing the study. The plyometric training program was 
performed under the supervision of the primary inves
tigator. Following a warm-up of jumping rope, subjects 
performed each exercise in the order shown in Table II. 
To be included in data analysis, any missed training ses
sions could be made up provided the make-up session 
occurred during the same week as the missed session. 

Statistical analysis 

For purposes of this study, the onset of reflex EMG 
activity was defined as the f"rrst deflection from base
line electrical activity. The time of onset was deter
mined by the primary investigator after visual inspec
tion of the EMG data on a high-resolution monitor. 
An additional investigator was also used to replicate the 
first deflection, especially in case of excessive noise or 
artifacts in the EMG signal. A mouse-controlled ver
tical cursor was placed at the first deflection of the 
EMG signal, and the elapsed time from the tendon tap 
was calculated to define the SLR (Figure 3). 

To eliminate potential bias in determining EMG 
onset times, each subject was assigned an identifica
tion number and the primary investigator was blinded 
to both the identity and group assignment of each sub
ject during the determination of the SLR. The prima
ry investigator was later provided with the identity of 
each subject and each subject's group for data analy
sis purposes. 

SLRDATA 

The pre-test latency time of QSLR was determined 
from the mean SLRs of Pre-test I and Pre-test II for 
both vastus medialis and vastus lateralis (i.e., mean 
of vastus medialis Pre-test I, vastus medialis Pre-test 
II, vastus lateralis Pre-test I, and vastus lateralis Pre-

NIIIIU8!ly placed cursor -

., - Teadon tllp 
~ 
j r----~----r. 

c___ ______ ___Jc___ ________ _J-10 
0 5 w ~ w ~ ~ ~ ~ ~ 

1llli 

Figure 3.-lliustration of the latency time determination from the raw 
EMGsignal. 

test II). The post-test latency time of SLR was calcu
lated using the same method. Similarly, the pre- and 
post-test latency times of GSLRs were determined as 
the mean SLRs of both pre- (or post-) tests for both the 
medial and lateral GSLRs. A mixed two-factor with
in-subjectsANOVA [group x (test sessionx subjects)] 
was used to analyze mean SLRs for the pre- and post
tests within and between the control and plyometric 
groups.33, 34 Post hoc analyses of significant F ratios 
were performed using Thkey's Honestly Significant 
Difference (HSD). Pearson product-moment correla
tion coefficients were calculated to verify the rela
tionship between subject height and latency time of 
SLR. 

VERTICAL JUMP DATA 

A mixed two-factor within-subjects ANOVA [group 
x (test session x subjects)] was used to analyze mean 
VJs for the pre- and post-tests within and between the 
control and plyometric groups.27, 35 Post hoc analyses 
of significant F ratios were performed using Thkey's 
HSD. Although two VJ post-tests were performed, 
only data from the pre-test and the first post-test were 
used for statistical analysis. 

TEST-RETEST RELIABILITY 

Test-retest reliability coefficients for the SLR con
ditions were determined by calculating an intraclass 
correlation coefficient (ICC) for each condition. 
Based on the design of this study and the type ofreli-
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TABLE m.-Average vertical jump (VJ) and latency time of the short-latency response (SLR) pre- and post-test results for control and plyo
metric groups ( ± SEM). 

Vertical jump {em) QSLR{IDll) GSLR(IDll) 

Pre-test Post-test Pre-test Post-test Pre-test Post-test 

Control 
Plyometric 

41.83 ±9.86 
42.31 ±9.36 

41.04±8.86 
44.69 ± 10.02 

23.88±2.80 
25.74±2.18 

24.15±2.31 
25.38 ±2.08 

35.09 ± 3.02 
38.09±3.63 

35.08±3.11 
37.70 ± 3.35 

QSLR; quadriceps femoris SLR; GSLR; gastrocnemius SLR. 

TABLE IV. -Average amplitude values of the short-latency response ( SLR) pre- and post-test results for control and plyomelric groups ( ± 
SEM). 

QSLR {volts) GSLR (volts) 
Group 

Pre-test Post-test Pre-test Post-test 

Control 
Plyometric 

7.74 ± 3.61 
6.53 ±2.68 

7.56±3.47 
6.31 ±3.40 

6.56±4.54 
3.92±2.63 

7.21 ±5.21 
4.06±2.34 

QSLR; quadriceps femoris SLR; GSLR; gastrocnemius SLR. 

ability required, the single measurement form of ICC 
Model was used-ICC (3,1).36 Test-retest reliability 
was calculated for Pre-test I and Pre-test ll at each site 
and for Post-test I and Post-test II at each site. The 
ICC (3,1) for test-retest reliability ranged from 0.90 
to 0.99. 

!NTRATES'IER RELIABILITY 

ICC (3,1) was also used to examine the intratester 
reliability of the primary investigator for visually iden
tifying the EMG onsets.36 EMG tracings were ran
domly selected from each test condition and SLRs 
were determined; within one week, the same EMG 
tracings were re-evaluated and compared to the first 
analysis using the ICC. The ICC (3,1) for intratester 
reliability of identifying EMG onsets was 0.99. 

The a priori level of significance for all statistical 
analyses was set at P~.05. SigmaStat Version 2.0 
(Jandel Scientific, San Rafael, CA, USA) was used to 
perform all statistical analyses. 

Results 

All 16 subjects completed both pre-tests and both 
post-tests. There were no significant musculoskeletal 
injuries as determined by the exercisefmjury logs com
pleted by the subjects. Attendance for all testing and 

plyometric training sessions was 100%. In three cas
es, excessive noise or artifacts in the EMG signal made 
SLR determination impossible. 

Vertical jump 

The plyometric group's mean (±SEM) VJ increase 
of 2.38±0.45 em following four weeks of plyometric 
training was significant (F1•14=9.524, P<0.05) (Table 
III). The control group's mean (±SEM) VJ decrease of 
0.79±0.93 em during the same four week period was 
not significant (P>0.05) (Table ill). The plyometric 
group's 2.38 em vertical jump increase was signifi
cantly greater than the control group's 0.79 em verti
cal jump decrease (P<0.05). 

Stretch reflex latency 

QUADRICEPS FEMORIS SLR 

The latency time of QSLRs for both groups ranged 
from 20.00 ms to 28.74 ms and were strongly corre
lated with subject height (r=0.82; P<0.05). The plyo
metric group's mean (±SEM) latency time ofQSLR 
decrease of 0.363±0.404 ms following four weeks of 
plyometric training was not significant (F114=3.321, 
P>0.05) (Table III). The control group's meaD. (±SEM) 
latency time of QSLR increase of 0.274±0.319 ms 
during the same four week period was not significant 
(P>0.05) (Table Ill). 
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GASTROCNEMIUS SLR 

The latency time of GSLRs for both groups ranged 
from 31.03 ms to 43.83 ms and were strongly corre
lated with subject height (r-0.84; P<0.05). The plyo
metric group's mean (±SEM) latency time of GSLR 
decrease of 0.392±0.257 ms following four weeks of 
plyometric training was not significant (F1,14=1.823, 
P>0.05) (Table Ill). The control group's mean (±SEM) 
latency time of GSLR decrease of 0.008±0.123 ms 
during the same four week period was not significant 
(P>0.05) (Table Ill). 

Discussion 

The data regarding correlation of subject height to 
SLR were included to support the validity of the meth
ods for determining the latency time of the SLR. 
Several studies have shown that height is a major fac
tor in determining the SLR of muscles.29, 33, 37, 38 The 
strong correlations between subject height and both 
the latency time of the QSLR (r=0.82) and the GSLR 
(r=0.84) found in this study confirm that relationship. 
Further, the means and ranges of the latency time val
ues reported here are comparable to similar studies, 18, 
29, 39 providing further evidence for the validity of the 
methods used during this investigation. 

The principal objective of this study was to determine 
if the latency time of the SLR is shortened following 
four weeks of plyometric training. While the VJ 
increased significantly, the results indicate that nei
ther the latency time of the QSLR nor the GSLR 
decreased significantly following four weeks of ply
ometric training. Because there has been no previous 
research conducted that examine the adaptation of the 
SLR to plyometric exercise, direct comparisons with 
other studies are difficult. 

Previous studies indicate balance and agility-type 
training can alter reaction to an external stimulus. 30,40 
Following three months of balance and stability train
ing, Ihara et al. 40 found that hamstring .. reaction times" 
decreased significantly. While the defined ''reaction 
time" involved mechanisms other than the SLR, the 
results do indicate that balance training can result in 
quicker mechanical responses to external stimuli. 
Similarly, Wojtys et aVO determined that healthy sub
jects performing six weeks of agility training signifi
cantly reduced the "spinal reflex times" of both vastus 
medialis and vastus lateralis in response to anterior 

translation of the tibia. Although the present study did 
not identify significant changes in the latency time of 
the SLR of the quadriceps femoris and gastrocnemius 
muscles following four weeks of plyometric training, 
previous studies indicate that reflex and reaction adap
tations to training can occur.3o. 40 Koceja and Kamen 41 
found that total reflex time (i.e., both the stretch reflex 
latency and electromechanical delay) following patel
lar tendon tap was shorter in sprint trained subjects 
than their endurance trained counterparts.41 Further, 
stretch reflex latencies are shorter when comparing 
''power" trained subjects to "endurance" trained sub
jects.21 Plyometric training, like sprint training, is a 
specific form of power training; therefore it is possi
ble that the stretch reflex latency may also respond 
favorably following training. Because different reflex
es were measured, however, it is uncertain if or how 
much the latency time of SLRs may have adapted to the 
aforementioned training programs. That changes did 
occur reinforces the notion that a reflexive compo
nent other than the latency time of SLR may adapt to 
plyometric training. 

The SLR can be altered with training. In their land
mark work, Wolpaw et al.19 found that the amplitude 
of the SLR may be conditioned with training. Monkeys 
were rewarded if they responded with either greater or 
lesser SLR amplitude, depending on the group assign
ment. Changes were apparent in as little as one week 
and responses remained after prolonged periods with
out perturbation training. Similar adaptations have 
been achieved in more recent investigations.l9, 20 
Meyer-Lohmann et aL 42 also found adaptations of the 
SLR following perturbation training. In their research, 
the SLR gradually increased in duration and ampli
tude while the LLR decreased to insignificant amounts 
following chronic perturbation training. These find
ings indicate that while the latency times of the SLRs 
in the present study were not significantly altered, 
training can affect the function of the SLR. There are 
several possibilities why the latency time of the SLR 
was unchanged during the present study and they are 
listed below. 

It is possible that the SLR may not significantly 
contribute to plyometric exercise. The quick move
ments of plyometric exercise involve the stretch 
shortening cycle (SSC).23 The SSC is divided into 
three phases, eccentric - preloading of agonist mus
cle groups- transition- delay between eccentric 
loading and concentric response - and concentric -
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release of mechanical energy stored during the eccen
tric phase. The eccentric phase of the SSC takes 
approximately 85 ms and the transition phase takes 
approximately 23 ms,u more than 110 ms before 
the concentric phase begins. This suggests that the 
LLR may be more involved in the reflex potentiation 
of muscle force and power when compared to the 
latency time of SLR (ranging from 20.00 ms to 43.83 
ms in this study). That is, plyometric exercise may 
last too long to substantially rely upon the SLR of the 
stretch reflex for potentiation of skeletal muscle 
activity. The key to this determination is the instant 
the stretch reflex is initiated during the SSe. The 
stretch reflex is initiated as soon as the muscle spin
dle detects a rapid change in length.34,43 Therefore, 
it is initiated at the beginning of the eccentric phase 
(i.e., after the initial stretching of the agonist muscle 
groups, primarily the quadriceps and gastrocnemius 
in this study). Because the results of this study indi
cate that the latency time of SLRs of the quadriceps 
femoris and gastrocnemius stretch reflexes do not 
decrease significantly following plyometric train
ing, it may be the LLR that is altered by plyometric 
training. 

In addition to the latency time of SLRs measured 
here, the overall reflex response includes the time 
between the initiation of muscle fiber action poten
tials and the time when significant muscle force pro
duction occurs (i.e., electromechanical delay). 
Electromechanical delay depends on additional factors 
such as the time required for excitation-contraction 
coupling and the rate of force production, while a 
shorter latency time of SLR may provide a more rapid 
activation of the muscle that may not equate to a quick
er movement response. Therefore, the electro
mechanical delay may be a more significant factor 
than the SLR when discussing the ability of reflex 
responses to potentiate muscle activity.44 

Another possible reason for the lack of change in the 
latency time of the SLR during the present study is 
that non-neural changes may occur following plyo
metric training. The adaptations may increase the mus
cular power production that occurs following partici
pation in a plyometric training program. Hypertrophy 
does occur following participation in a resistance train
ing program.16,17 The increased cross-sectional area 
observed after resistance training may occur following 
plyometric training as well. However, research indi
cates that neural adaptations precede hypertrophic 

changes following resistance training.16, 17 Although 
changes in cross-sectional area were not assessed, the 
fact that a four-week training period was employed in 
this study suggests that hypertrophy did not account for 
the increased VJ height seen in the plyometric group 
subjects. Rather, it is more likely that neuromuscular 
adaptations other than the latency time of the SLR 
(e.g., changes in LLR or electromechanical delay) are 
responsible for the increased vertical jump height seen 
during this study. 

Furthermore, while this study examined the adap
tation of the SLR, the plyometric training program 
was designed to maximize the subjects' ability to pro
duce muscular power (as measured by the VJ test). 
Results presented here indicate that the plyometric 
program was successful and are in agreement with 
previous studies involving plyometric training pro
grams.l. 3, 5 

An additional possible reason for the lack of change 
in the latency time of the SLR during the present study 
is that the latency time of the SLR may not represent 
the sensitivity of the stretch reflex arc and its func
tional role in stretch-shortening cycle type of muscle 
action. It has been shown in several experiments that 
it is the size of the peak-to-peak amplitude which cor
responds to the amount of motor units recruited and, 
therefore it has a strong contribution to the stiffness 
control of the muscle during the eccentric phase of 
the sse movement. lB. 45 Thus, via stiffness control it 
can have an important role in utilization of the elastic 
energy during the following concentric phase. 
Therefore, even in the present experiment peak-to
peak amplitude of the SLR could have had a significant 
role in the performance enhancement. However, peak
to-peak amplitude of the SLR was not measured in 
the present study. It is the intention of the authors to per
form such measures in future studies. 

Conclusions 

The results of this study suggest that there are pos
sible adaptations following participation in a plyo
metric exercise training program. The potential for 
plyometric training to increase performance in tasks 
such as the vertical jump was supported, and the results 
suggest that adaptations other than the latency time 
of the stretch reflex are responsible for the observed 
increases in performance. Further investigation of 
changes in long-latency reflexes, electromechanical 
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delay, and muscle force production characteristics 
could delineate the specific mechanisms responsible for 
performance improvements and aid in efforts to deter
mine optimal plyometric program design. 
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