
Theoretical Computer Science 412 (2011) 3370–3377

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The free process algebra generated by δ, ϵ and τ

Piet H. Rodenburg a,∗, Jan Willem Klop b, Karst Koymans a, Jos Vrancken c

a Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
b Department of Theoretical Computer Science, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
c Section of Information & Communication Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands

a r t i c l e i n f o

For Jan Bergstra, on the occasion of his
sixtieth birthday, in friendship and
gratitude

Keywords:
Process algebra
Bisimulation
Heyting algebra
Empty process
Silent step
Infinite sums and products

a b s t r a c t

We establish the structure of the initial process algebra with additive and multiplicative
identity elements and no article silent step.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In process algebra, as in arithmetic, there are basic operations + and ·; both theories also employ a neutral element
for +, called 0 in arithmetic, and δ in our formulation of process algebra. Apart from their use in streamlining theory,
these notions have a concrete interpretation: penury in arithmetic, and perceived impass in process algebra. Now, further
streamlining is achieved in arithmetic by the introduction of a neutral element 1 for ·; and there were heated discussions in
the nineteen-eighties on whether process algebra should also have such an element (to be called ϵ). The arguments to the
contrary prevailed, at the time. They are twofold. First, there is no 1 in the most general formulation of ring theory either,
because you do not want to miss applications in which there is no such identity element. The second argument is peculiar
to process algebra: what is a communication with nothing, a process without duration, to be?

In spite of these difficulties, the possibilities of ϵ were investigated, notably in papers by Baeten and Van Glabbeek [2]
and by one of us [10]. Moreover, formulations with ϵ abound in the textbook by Baeten andWeijland [4]; and they have yet
gained in prominence in Baeten’s new book [1]. (Indeed, ϵ and δ are written 1 and 0 there.)

A rather odd result was announced at ameeting in 1985. An exploration of processes without visible actions, constructed
from just impass (δ), the silent step τ , and ϵ, indicated that they have the structure of the free Heyting algebra on a single
generator. This algebra is a catalogue of the statements constructible from one primitive statement that are distinct in
intuitionistic logic; these are infinitely many, in contrast to classical logic where there are only four: p,¬p, true, and false. It
was discovered by Rieger [9], and rediscovered by Nishimura [8] a decade later.

We give a proof for this description of actionless processes below, with some further remarks. The deeper connection
between hidden action and intuitionistic truth values remains an open question of philosophy.

∗ Corresponding author.
E-mail address: P.H.Rodenburg@uva.n (P.H. Rodenburg).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.03.019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81148669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.03.019
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:P.H.Rodenburg@uva.n
http://dx.doi.org/10.1016/j.tcs.2011.03.019

P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377 3371

2. Preliminaries

We denote sets-with-structure, such as algebras or relational structures, by bold type, e.g. A, and the underlying universe
by the corresponding italic letter (in the example, A).

The type of an algebra A is the set of operation symbols (assuming arities fixed) interpreted in A. Terms are formed
from variables and operation symbols as usual. A term algebra is a suitable set of terms with the application of the various
operation symbols to form new terms as operations. A term not containing variables will be called a ground term.

An ordering of a set X is a binary relation on X that is reflexive, antisymmetric and transitive.
The diagonal ∆X of a set X is the relation {⟨x, x⟩ | x ∈ X}.
If X is a set, then X∗ is the set of finite sequences of elements of X , including the empty sequence.

Process algebras

A process algebra has two binary operations, · and +, (sequential composition or product, and alternative composition
or sum); and satisfies

x+ y = y+ x A1
(x+ y)+ z = x+ (y+ z) A2
x+ x = x A3
(x+ y) · z = (x · z)+ (y · z) A4
(x · y) · z = x · (y · z) A5.

Product is considered to bind more strongly than sum, and the symbol · is often omitted.
A1–A5 were introduced by Bergstra and Klop [3] as the laws of basic process algebra.

Definition 2.1. Let P be a process algebra, and A ⊆ P . The basic processes of P over A are inductively defined by:
1. the elements of A are basic processes;
2. if a ∈ A and t is a basic process, then at is a basic process;
3. if s and t are basic processes, then s+ t is a basic process.
Proposition 2.2. Every basic process of P over A can be written in the form

a0t0 + · · · + an−1tn−1 + b0 + · · · + bk−1 (1)

with a0, . . . , an−1, b0, . . . , bk−1 ∈ A and t0, . . . , tn−1 basic processes.
Lemma 2.3. Products and sums of basic processes are basic processes.
Proof. If s and t are basic processes, then s + t is a basic process by definition. That st is a basic process, is shown by
induction on s, as follows: at is a basic process by clause (ii) of the definition; (as1)t = a(s1t) by A5, and s1t is a basic process
by induction hypothesis, so a(s1t) is a basic process by clause (ii) of the definition; and (s1 + s2)t = s1t + s2t by A4, s1t and
s2t are basic processes by induction hypothesis, so s1t + s2t is a basic process by clause (iii) of the definition. �

Proposition 2.4. Let B be a process algebra, A ⊆ B. The following statements are equivalent:
1. all elements of B are basic processes over A;
2. B is generated by A.
Proof. 1. ⇒ 2. It is clear from Definition 2.1 that the basic processes are generated by A.
2. ⇒ 1. By Definition 2.1 and Lemma 2.3. �

Process structures

Let A be a set. An A-process structure is a structure
⟨P, ⟨Ra | a ∈ A⟩, Rϵ,

√
⟩

with binary relations Ra (a ∈ A) and Rϵ , and a constant
√
. We allow process structures to be partial; that is, the constant

√

may be undefined (have empty interpretation). For the rest of this section we fix an A-process structure P.
Suppose α ∈ A∪ {ϵ}. We write p

α
−→ q if ⟨p, q⟩ ∈ Rα . For σ = ⟨α1, . . . , αn⟩ ∈ (A∪ {ϵ})∗ we write p

σ
−→−→ q if p0, . . . , pn

exist such that
p0

α1
−→ p1

α2
−→ · · ·

αn
−→ pn

and p = p0, pn = q. We call σ a trace from p to q. We write
p −→−→ q

if a trace σ exists such that p
σ
−→−→ q. We say that p terminates if p −→−→

√
.

Concatenation of two sequences σ1 and σ2 will be represented by juxtaposition: σ1σ2; coupling of a behind σ as σa.
An arbitrary element of {α}∗ will sometimes be indicated by α∗. Note that ϵ-steps are treated on a par with real actions
(elements of A); they are not omitted in traces.

3372 P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377

Definition 2.5. (Let P be an A-process structure.) A symmetric binary relation ρ on P is a bisimulation if, whenever xρy, if

a ≠ ϵ and x
ϵ∗a
−→−→ x′, then y′ ∈ P exists such that y

ϵ∗a
−→−→ y′ and x′ρy′; and x

ϵ∗

−→−→
√

implies y
ϵ∗

−→−→
√
.

x
ϵ∗

����

ρ

y

ϵ∗
����

·

a
��

·

a
��

x′
ρ

y′

We note that the endpoints of ϵ-steps need not be related. We say that p and q are bisimilar, notation p↔ q, if there exists
a bisimulation ρ such that pρq.

Let for x ∈ P , Px be the relative substructure of P with universe

{y ∈ P | x −→−→ y},

the set of nodes reachable from x. It is evident that Pp ∼= Pq implies that p and q are bisimilar: an isomorphism is a
bisimulation.

The union X ∪ Y of relative substructures X and Y of P is

⟨X ∪ Y , ⟨RX
a ∪ RY

a | a ∈ A⟩, RX
ϵ ∪ RY

ϵ , (
√P

)⟩,

in which
√

is interpreted, as in P, if and only if
√P belongs to X or Y . (One could write the interpretation of

√
as
√X
∪
√Y,

a union of partial nullary functions.)
We write r = p+ q if Pr results from extending Pp ∪ Pq by

p
ϵ
←− r

ϵ
−→ q,

or more precisely, if X = Pp and Y = Pq then

Pr = ⟨X ∪ Y ∪ {r}, ⟨RX
a ∪ RY

a | a ∈ A⟩, RX
ϵ ∪ RY

ϵ ∪ {⟨r, p⟩, ⟨r, q⟩},
√X
∪
√Y
⟩,

and r = p · q if either p does not terminate and r = p, or Pr is isomorphic with the structure one obtains from the disjoint
union of Pp and Pq by identifying

√Pp and q, and interpreting
√

as
√Pq . (The diagram below sketches the relation between

Pp, Pq and Pr in the latter case, with an embedding of Pq in Pr and an almost-embedding –
√

is not preserved – of Pp; if
√

is not defined in Pq, we intend it to be not defined in Pr .)

p Pr , r = p · q

·

&&

√

·

q

::

√

√

The process structure P is closed under composition if for all p, q ∈ P , r and s exist such that r = p+ q and s = p · q.
The diagonal∆P is a bisimulation; the inverse of a bisimulation is a bisimulation; and the composite of two bisimulations

is a bisimulation. So ↔ is an equivalence relation on P .

Lemma 2.6. Suppose p1↔ p2 and q1↔ q2. Then
1. if ri = pi + qi (i = 1, 2), then r1↔ r2;
2. if ri = pi · qi (i = 1, 2), then r1↔ r2.

P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377 3373

Proof. Let β be a bisimulation of p1 and p2, and ρ a bisimulation of q1 and q2. Then p1 terminates if and only if p2 terminates.
1. One easily checks that {⟨r1, r2⟩} ∪ β ∪ ρ is a bisimulation of r1 and r2.
2. Since isomorphisms are bisimulations and composites of bisimulations are bisimulations, we may assume that β is a

bisimulation of the copies of Pp1 and Pp2 that are part of Pr1 and Pr2 (in which
√

has been replaced by, respectively, q1
and q2), and ρ a bisimulation of the copies of Pq1 and Pq2 . Then β ∪ ρ is a bisimulation of r1 and r2. �

Consider the quotient P/↔ . The lemma implies that for any equivalence classesX and Y , there is atmost one equivalence
class that contains an element z for which there are x ∈ X and y ∈ Y such that z = x+ y, and similarly for ·. So putting

X + Y = Z ⇔ ∃x ∈ X∃y ∈ Y∃z ∈ Z z = x+ y,
X · Y = Z ⇔ ∃x ∈ X∃y ∈ Y∃z ∈ Z z = x · y,

we define a partial algebra with universe P/↔ . Let us denote it by P/↔ .
Corollary 2.7. If a process structure P is closed under composition, then P/↔ is an algebra of type {+, ·}.

Now assume that P is closed under composition.
Alternative composition in P/↔ is evidently commutative. It is associative: let s1 = p+ q, t1 = s1 + r , s2 = q+ r , and

t2 = p+ s2. Then
{⟨t1, t2⟩} ∪∆Pp ∪∆Pq ∪∆Pr

is a bisimulation of t1 and t2.
For idempotency: let q = p+ p. Put X = Pp − {p}. Then
{⟨q, p⟩} ∪∆X

is a bisimulation of q and p.
Right distributivity: take s = p+ q, t = sr , s1 = pr , s2 = qr , and u = s1 + s2. Since we may assume that r is the same in s1
and s2, we may also assume that s = u. Similarly (pq)r and p(qr) may be assumed identical.

We conclude that P/↔ is a process algebra.

Action relations

Let T be the ground term algebra of type {+, ·} over a set A of constant symbols (‘atoms’); take
√
∉ T . The action relations

are the binary relations
a
−→, for a ∈ A, and

ϵ
−→, inductively defined by

a
a
−→
√

,

x+ y
ϵ
−→ x and y+ x

ϵ
−→ x,

x
a
−→ x′ ⇒ xy

a
−→ x′y,

x
a
−→
√
⇒ xy

a
−→ y.

In this way the algebra T determines an A-process structure

(⟨T ∪ {
√
}⟩, ⟨

a
−→⟩a∈A,

ϵ
−→,

√
⟩.

The action graph of x ∈ T is the closure of {x} under the action relations, with the restricted relations.

3. Order and lattice structure in process algebras

Let B be a process algebra with a constant δ satisfying
x+ δ = x D1

δx = δ D2
We write x ≤ y, for x, y ∈ B, if x+ y = y. From A1–3 it follows that≤ is an ordering; by D1, δ is its least element.
Proposition 3.1. If for all x ∈ B, (x] (= {y ∈ B | y ≤ x}) is finite, then ⟨B,≤⟩ is a lattice.
Proof. By (A1–3) ⟨B,+⟩ is an (upper) semilattice. Define

x ∧ y = 6((x] ∩ (y]).
It is easy to see that

u ≤ x, y⇔ u ≤ x ∧ y
and

x ∧ y = x⇔ x ≤ y⇔ x+ y = y.
So ⟨B,+,∧⟩ is a lattice. �

There is no reason why the lattice induced by a process algebra should be distributive:
Proposition 3.2. Every+-semilattice can be expanded to a process algebra.
Proof. Define: xy = x. �

3374 P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377

4. The {δ, ϵ, τ}-lattice

Still there are natural process algebras that are distributive lattices, even freeHeyting algebras. Thewell-known constants
δ, ϵ and τ satisfy the laws D1 and D2 stated above and:

ϵx = x = xϵ E
ττ = τ T1

τ + ϵ = τ T2.

One easily derives ττx = τx (by T1 and A5) and

τx+ x = τx T2′

(by T2, A4 and E); these are the simplest ofMilner’s classical τ -laws, for the case that τ is the only proper step.More complex
τ -laws are also derivable:

Proposition 4.1.

1. τ(τ (x+ y)+ x) = τ(x+ y).
2. τ(x+ τy)+ τy = τ(x+ τy).

Proof.

1.

τ(τ (x+ y)+ x) = τ(τ (x+ y)+ x+ y+ x) by T2′
= τ(τ (x+ y)+ x+ y) by A1–3
= ττ(x+ y) = τ(x+ y) by T2′ and T1

2. τ(x+ τy) ≤ τ(x+ τy)+ τy ≤ τ(x+ τy)+ x+ τy = τ(x+ τy), by T2′. �

In the absence of actions, (1) is the Branching Law, and (2) the Third τ -Law.

Definition 4.2. Let d0 = δ, d1 = ϵ, d2 = τd0, d2n+3 = d2n+1 + d2n+2, d2n+4 = τd2n+1.

Lemma 4.3. If n > 0, then d2n−1 ≤ d2n+2 and d2n+3 = d2n + d2n+2.

Proof. Assume n > 0. Then d2n+2 = τd2n−1, so by T2′ d2n−1 ≤ d2n+2, so d2n+3 = d2n+1 + d2n+2 = d2n−1 + d2n + d2n+2 =
d2n + d2n+2. �

It follows that the lattice structure of the processes d0, d1, . . . is a homomorphic image of

...

}}}}}}}

}}}}}}}

AAAAAAA

d5

~~~~~

@@@@@
d6

@@@@@

d4

~~~~~
d3

~~~~~

@@@@@

d1

~~~~~

@@@@@
d2

@@@@@

d0

~~~~~

@@@@@

In fact this lattice contains all processes that are generated by δ, ϵ and τ . Indeed, by Proposition 2.4 all these processes are
basic processes over δ, ϵ and τ . So it suffices to note that, obviously, the lattice is closed under alternative composition; and
that δdn = d0, ϵdn = dn, τd0 = d2, τd2n+1 = d2n+4, and τd2n+2 = d2n+2.



P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377 3375

5. ϵτ-bisimulation

Now consider a process structure with only two relations, indexed τ and ϵ. The constant τ stands for a silent step;
in essence, some activity of an undetermined nature. By the axiom T1, we cannot tell two such steps from a single one.
Accordingly, we adapt Definition 2.5 as follows, in two steps.

Definition 5.1. Let P be a {τ }-process structure.

1. A symmetric relation ρ on P is an ϵτ -bisimulation if, whenever xρy, if x
ϵ∗τ
−→−→ x′, either x′ρy, or y′ exists such that y

ϵ∗τ
−→−→ y′

and x′ρy′; and x terminates if and only if y terminates.

2. An ϵτ -bisimulation ρ on P satisfies the root condition with respect to p and q if pρq and p
ϵ∗τ
−→−→ x implies that y exists

such that q
ϵ∗τ
−→−→ y and xρy, and similarly with p and q interchanged.

If an ϵτ -bisimulation ρ satisfies the root condition with respect to p and q, we also say ρ is a rooted ϵτ -bisimulation
between p and q.

We say that p and q are ϵτ -bisimilar, notation

p↔ ϵτq,

if there exists an ϵτ -bisimulation ρ such that pρq; and rooted ϵτ -bisimilar, notation

p↔ rϵτq,

if there exists a rooted ϵτ -bisimulation between p and q.
Observe that if ρi, i ∈ I , are ϵτ -bisimulations on P , then the union ρ =


i ρi is an ϵτ -bisimulation, and if any ρi satisfies

the root condition with respect to p and q, then so does ρ. Hence in any process structure, ↔ ϵτ is an ϵτ -bisimulation, and
↔ rϵτ a rooted ϵτ -bisimulation.

A bisimulation in the sense of Definition 2.5, with A = {τ }, is an ϵτ -bisimulation that satisfies the root condition with
respect to any two points that it connects.

Lemma 5.2. Let π and ρ be ϵτ -bisimulations on a {τ }-process structure P. Then π ◦ ρ is an ϵτ -bisimulation.

Proof. Suppose wπxρy. Then w terminates if and only if y terminates. Suppose w
ϵ∗τ
−→−→ w′. Then either w′πx, or x′ exists

such that x
ϵ∗τ
−→−→ x′ and w′πx′. In the first case,

w′(π ◦ ρ)y. (∗)

In the second case, either (a) x′ρy, or (b) y′ exists such that y
ϵ∗τ
−→−→ y′ and x′ρy′. In case (a), we again have (∗). In case (b),

w′(π ◦ ρ)y′. �

Corollary 5.3. If p↔ rϵτq and q↔ rϵτ r, then p↔ rϵτ r.

Hence the argument of Section 2, showing that bisimulation is a congruence of the A-process structure, and that the
quotient is a process algebra, also proves that rooted ϵτ -bisimilarity is a congruence of the {τ }-process structure, and the
quotient is a process algebra.

Fix a {τ }-process structure P that is closed under composition. Let δ be an unrelated node (≠
√
) in P; and a, for a ∈ {ϵ, τ },

a node that is connected, by Ra exclusively, to
√
.

The diagonal ∆P is a rooted ϵτ -bisimulation between p+ δ and p; and δ · p = δ. So P/↔ rϵτ is a model of D1 and D2. It
is easy to see that P/↔ rϵτ is a model of E.

Let v = τ , w = τ · v. Then

{⟨w, v⟩, ⟨v,
√
⟩, ⟨
√

,
√
⟩}

is a rooted ϵτ -bisimulation between w and v.

w

τ

��
v

τ

��

v

τ

��√ √



3376 P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377

Let v = τ , w = v + ϵ. Then

{⟨w, v⟩, ⟨
√

,
√
⟩}

is a rooted ϵτ -bisimulation of w and v. In the figure below the ϵ-labels have been suppressed.

w

����
��

��
��

��
==

==
==

==

v

τ
��

<<
<<

<<
<<

·

����
��

��
��

v

τ

��√ √

We conclude that T1 and T2 hold in P/↔ rϵτ . So P/↔ rϵτ is a model of A1–5, D1–2, E and T1–2. Hence, to prove that
the terms d0, d1, . . . have distinct meanings in our theory, it is enough that we find a {τ }-process structure in which their
representatives are not rooted ϵτ -bisimilar. We obtain such a structure by substituting action relations for (almost all) the
Hasse-lines in the +-lattice of Section 4. The result is shown below, with solid arrows representing τ -, and broken arrows
ϵ-steps.

...

  
AA

AA
AA

  A
A

A

~~}
}

}

  A
A

A

~~}
}

}

~~}}
}}

}}

  
@@

@@
@

  @
@

@

~~~
~

~

d5

��
@

@
@

��~
~

~
d6

��~~
~~

~

d4

��
@@

@@
@ d3

��
@

@
@

��~
~

~

d1 d2

��~~
~~

~

d0

We first prove that dm and dn are ϵτ -bisimilar only if either they are identical or they are connected by a τ -step. Let β be
an ϵτ -bisimulation.

1. d0 and d2 are not ϵτ -bisimilar to any other node, for all other nodes terminate.

2. d1 and d4 are not ϵτ -bisimilar to any d2k+3, because d2k+3
ϵ∗τ
−→−→ d0. A fortiori they are not ϵτ -bisimilar to any d2k+6. For

suppose d2k+6βd4. Since d2k+6
τ
−→ d2k+3, we must have d2k+3βd4 or d2k+3βd1, both known to be impossible. Similarly

d2k+6βd1 is impossible. Observe that d2n+5
ϵ∗τ
−→−→ di if and only if i = 2m+ 1 for some m ≤ n or i = 0; and d2n+4

ϵ∗τ
−→−→ di

if and only if i = 2n+ 1.

3. d2n+5βd3 requires, by d2n+5
ϵ∗τ
−→−→ d1, that either d1βd3 or d1βd0, known to be impossible by 2 and 1. If d2n+8βd3, then,

by d2n+8
τ
−→ d2n+5, either d2n+5βd3 or d2n+5βd0, impossible by what we just proved and by 1. If d2n+5βd6, then by

d2n+5
ϵ∗τ
−→−→ d1, either d1βd6 or d1βd3, both known to be impossible by 2. If d2n+8βd6, then, by d2n+8

τ
−→ d2n+5, either

d2n+5βd6 or d2n+5βd3, both of which we have shown to be impossible.
4. For the remainder we proceed by induction on k. Assume that for all j < k and for all i,

di is ϵτ -bisimilar to d2j+3 or d2j+6 only if i ∈ {2j+ 3, 2j+ 6}.

Take any n ≥ k > 0. If d2n+5βd2k+3, then, by d2n+5
ϵ∗τ
−→−→ d2k+1, we must have d2k+1βd2k+3 or d2k+1βd2m+1 for some

m < k, or d2k+1βd0. The last alternative is ruled out by 1; the other alternatives contradict the induction hypothesis. If

P.H. Rodenburg et al. / Theoretical Computer Science 412 (2011) 3370–3377 3377

d2n+8βd2k+3, then, by d2n+8
τ
−→ d2n+5, we must have d2n+5βd2k+3 or d2n+5βd2m+1 for some m < k, or d2n+5βd0. We

have shown above that the first alternative is impossible; the second contradicts the induction hypothesis; and the third

contradicts 1. A fortiori d2n+5βd2k+6 is impossible since d2n+5
ϵ∗τ
−→−→ d2k+1; and this precludes d2n+8βd2k+3.

It follows that distinct dm and dn can only be rooted ϵτ -bisimilar if dm
τ
−→ dn. But then, rooted ϵτ -bisimilarity requires

that dn
ϵ∗τ
−→−→ dk for some dk ϵτ -bisimilar to dn; and such dk do not exist.

6. Concluding remarks

By the discussion above, infinitelymany distinct processes are nameable by terms constructed from δ, ϵ and τ . One easily
checks that on omission of τ , only δ and ϵ remain, since δx = δ, δ + x = x+ x = x, and ϵx = xϵ = x. Similarly, omitting δ
grounds us at {ϵ, τ }, and without ϵ we only have δ, τ and ∆ (=τδ).

There are various definitions for bisimulation involving τ , but in the absence of real actions they do not seem to make
much of a difference. The root condition is quite important though, as we have seen.

Further graphs

As set forth in [10], δ may be equated with the ϵ-cycle ϵω . Under Definition 5.1, the τ -cycle τω is rooted ϵτ -bisimilar
with ∆.

xτ :: y

τ

��
·

It has been argued that∆, andnot δ, deserves the appellation deadlock. If δ is among the options a process has, it is recognized,
and can be avoided (as reflected by D1); a summand ∆, on the other hand, cannot in general be cancelled. Whereas δ is an
observable lock that allows the choice of a different channel, ∆ is a true dead-end.

De Jongh’s model

The Rieger–Nishimura lattice is the lattice of propositions of a particular Kripke model, first discovered by De Jongh (it is
described in an exercise to Section 5.4 of [5]). In process algebraic terms, it consists of the outer nodes of the process structure
of the previous section — the ones with even index, except that d1 replaces d0. The proposition p expresses immediate
termination;⊥ does not hold anywhere, and may be considered to correspond with δ (lock), which is not represented; ¬p
corresponds with ∆ (deadlock). The accessibility relation is reachability in the process structure.

Infinite elements

The lattice of Section 4 is completed by dω = 6ndn and dω+1 = τdω; there it ends. Thus it is isomorphic to the completion
of the Rieger–Nishimura lattice [7], dω+1 corresponding to⊤. The argument above, showing τδ = τω , applies to all infinite
repetitions of elements dξ with ξ > 1: they are all equivalent to ∆. Indeed, any infinite product

∞∏
j=0

dξj

is ∆, except if the first ξj ≠ 1 is 0, or all ξj are 1: then the result is δ.

Acknowledgements

A comment by one of the referees made us aware of a serious mistake in the first version of this paper.

References

[1] J.C.M. Baeten, T. Basten, M.A. Reniers, Process Algebra: Equational Theories of Communicating Processes, Cambridge, 2010.
[2] Jos Baeten, Rob van Glabbeek, Abstraction and empty process in process algebra, Fundamenta Informaticae 12 (1989) 221–242.
[3] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Information and Control 60 (1984) 109–137.
[4] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge, 1990.
[5] Dirk van Dalen, Logic and structure, Berlin, 1980.
[6] Robin Milner, Semantics of concurrent processes, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol. B, Amsterdam, 1990,

pp. 1203–1242.
[7] Mark Nadel, Infinitary intuitionistic logic from a classical point of view, Annals of Mathematical Logic 14 (1978) 159–191.
[8] Iwao Nishimura, On formulas in one variable in intuitionistic propositional calculus, Journal of Symbolic Logic 25 (1960) 327–331.
[9] Ladislav Rieger, On the lattice theory of Brouwerian propositional logic, Acta Facultatis Rerum Naturalium Universitatis Carolinae 189 (1949) 1–40.

[10] J.L.M. Vrancken, The algebra of communicating processes with empty process, Theoretical Computer Science 177 (1997) 287–328.

	The free process algebra generated by δ, ε and τ
	Introduction
	Preliminaries
	Order and lattice structure in process algebras
	The {δ, ε, τ }-lattice
	ε τ-bisimulation
	Concluding remarks
	Acknowledgements
	References

