132,124 research outputs found
The effect of correlation between demands on hierarchical forecasting
The forecasting needs for inventory control purposes are hierarchical. For SKUs in a product family or a SKU stored across different depot locations, forecasts can be made from the individual series’ history or derived top-down. Many discussions have been found in the literature, but it is not clear under what conditions one approach is better than the other. Correlation between demands has been identified as a very important factor to affect the performance of the two approaches, but there has been much confusion on whether positive or negative correlation. This paper summarises the conflicting discussions in the literature, argues that it is negative correlation that benefits the top-down or grouping approach, and quantifies the effect of correlation through simulation experiments
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Phase behaviour of DNA in presence of DNA-binding proteins
To characterize the thermodynamical equilibrium of DNA chains interacting
with a solution of non-specific binding proteins, a Flory-Huggins free energy
model was implemented. We explored the dependence on DNA and protein
concentrations of the DNA collapse. For physiologically relevant values of the
DNA-protein affinity, this collapse gives rise to a biphasic regime with a
dense and a dilute phase; the corresponding phase diagram was computed. Using
an approach based on Hamiltonian paths, we show that the dense phase has either
a molten globule or a crystalline structure, depending on the DNA bending
rigidity, which is influenced by the ionic strength. These results are valid at
the thermodynamical equilibrium and should therefore be consistent with many
biological processes, whose characteristic timescales range typically from 1 ms
to 10 s. Our model may thus be applied to biological phenomena that involve
DNA-binding proteins, such as DNA condensation with crystalline order, which
occurs in some bacteria to protect their chromosome from detrimental factors;
or transcription initiation, which occurs in clusters called transcription
factories that are reminiscent of the dense phase characterized in this study.Comment: 20 pages, 9 figures, accepted for publication at The Biophysical
Journa
Noncommutative gauge fields coupled to noncommutative gravity
We present a noncommutative (NC) version of the action for vielbein gravity
coupled to gauge fields. Noncommutativity is encoded in a twisted star product
between forms, with a set of commuting background vector fields defining the
(abelian) twist. A first order action for the gauge fields avoids the use of
the Hodge dual. The NC action is invariant under diffeomorphisms and twisted
gauge transformations. The Seiberg-Witten map, adapted to our geometric setting
and generalized for an arbitrary abelian twist, allows to re-express the NC
action in terms of classical fields: the result is a deformed action, invariant
under diffeomorphisms and usual gauge transformations. This deformed action is
a particular higher derivative extension of the Einstein-Hilbert action coupled
to Yang-Mills fields, and to the background vector fields defining the twist.
Here noncommutativity of the original NC action dictates the precise form of
this extension. We explicitly compute the first order correction in the NC
parameter of the deformed action, and find that it is proportional to cubic
products of the gauge field strength and to the symmetric anomaly tensor
D_{IJK}.Comment: 18 pages, LaTe
The role of traction in membrane curvature generation.
Curvature of biological membranes can be generated by a variety of molecular mechanisms including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mechanisms have the net effect of generating tractions (force per unit length) on the bilayer that are translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the membrane can be used to infer the traction acting locally on the membrane. We show that buds and tubes, two common membrane deformations studied in trafficking processes, have different traction distributions along the membrane and that these tractions are specific to the molecular mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial force applied to the membrane as well as that of an effective line tension can be calculated from these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties in material properties and follow with a discussion on sources of uncertainty in membrane shape
Prevalence and causes of blindness and visual impairment in Muyuka: a rural health district in South West Province, Cameroon.
AIM: To estimate the prevalence and causes of blindness and visual impairment in the population aged 40 years and over in Muyuka, a rural district in the South West Province of Cameroon. METHODS: A multistage cluster random sampling methodology was used to select 20 clusters of 100 people each. In each cluster households were randomly selected and all eligible people had their visual acuity (VA) measured by an ophthalmic nurse. Those with VA <6/18 were examined by an ophthalmologist. RESULTS: 1787 people were examined (response rate 89.3%). The prevalence of binocular blindness was 1.6% (95% CI: 0.8% to 2.4%), 2.2% (1.% to 3.1%) for binocular severe visual impairment, and 6.4% (5.0% to 7.8%) for binocular visual impairment. Cataract was the main cause of blindness (62.1%), severe visual impairment (65.0%), and visual impairment (40.0%). Refractive error was an important cause of severe visual impairment (15.0%) and visual impairment (22.5%). The cataract surgical coverage for people was 55% at the <3/60 level and 33% at the <6/60 level. 64.3% of eyes operated for cataract had poor visual outcome (presenting VA<6/60). CONCLUSIONS: Strategies should be developed to make cataract services affordable and accessible to the population in the rural areas. There is an urgent need to improve the outcome of cataract surgery. Refractive error services should be provided at the community level
Impact of Driving Cycles on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport: CO2, N2O and CH4 emissions as a function of engine warm up and driving cycles. Five different urban driving cycles were developed and used including free flow driving and congested driving. An in-vehicle FTIR (Fourier Transform Inferred) emission measurement system was installed on a EURO2 emission compliant SI (Spark Ignition) car for emissions measurement at a rate of 0.5 HZ under real world urban driving conditions. This emission measurement system was calibrated on a standard CVS (Constant Volume Sampling) measurement system and showed excellent agreement on CO2 measurement with CVS results. The N2O and CH4 measurement was calibrated using calibration gas in lab. A MAX710 real time in-vehicle fuel consumption measurement system was installed in the test vehicle and real time fuel consumption was then obtained. The temperatures across the TWC (Three Way Catalyst) and engine out exhaust gas lambda were measured. The GHG (greenhouse gas) mass emissions and consequent GWP (Global Warming Potential) for different urban diving conditions were analyzed and presented. The results provided a better understanding of traffic related greenhouse gas emission profile in urban area and will contribute to the control of climate change
QCD axion and quintessential axion
The axion solution of the strong CP problem is reviewed together with the
other strong CP solutions. We also point out the quintessential
axion(quintaxion) whose potential can be extremely flat due to the tiny ratio
of the hidden sector quark mass and the intermediate hidden sector scale. The
quintaxion candidates are supposed to be the string theory axions, the model
independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200
Analyzing X-ray variability by State Space Models
In recent years, autoregressive models have had a profound impact on the
description of astronomical time series as the observation of a stochastic
process. These methods have advantages compared with common Fourier techniques
concerning their inherent stationarity and physical background. If
autoregressive models are used, however, it has to be taken into account that
real data always contain observational noise often obscuring the intrinsic time
series of the object. We apply the technique of a Linear State Space Model
which explicitly models the noise of astronomical data and allows to estimate
the hidden autoregressive process. As an example, we have analysed a sample of
Active Galactic Nuclei (AGN) observed with EXOSAT and found evidence for a
relationship between the relaxation timescale and the spectral hardness.Comment: 4 pages, Latex, uses Kluwer Style file crckapb.cls To appear in Proc.
of Astronomical Time Series, Tel Aviv, 199
- …
