581 research outputs found

    The Unusually Luminous Extragalactic Nova SN 2010U

    Get PDF
    We present observations of the unusual optical transient SN 2010U, including spectra taken 1.03 days to 15.3 days after maximum light that identify it as a fast and luminous Fe II type nova. Our multi-band light curve traces the fast decline (t_2 = 3.5 days) from maximum light (M_V = -10.2 mag), placing SN 2010U in the top 0.5% of the most luminous novae ever observed. We find typical ejecta velocities of approximately 1100 km/s and that SN 2010U shares many spectral and photometric characteristics with two other fast and luminous Fe II type novae, including Nova LMC 1991 and M31N-2007-11d. For the extreme luminosity of this nova, the maximum magnitude vs. rate of decline relationship indicates a massive white dwarf progenitor with a low pre-outburst accretion rate. However, this prediction is in conflict with emerging theories of nova populations, which predict that luminous novae from massive white dwarfs should preferentially exhibit an alternate spectral type (He/N) near maximum light.Comment: 16 pages, 16 figures. Submitted to the Astrophysical Journa

    A Study of the Type II-P Supernova 2003gd in M74

    Get PDF
    We present photometric and spectroscopic data of the type II-P supernova 2003gd, which was discovered in M74 close to the end of its plateau phase. SN 2003gd is the first type II supernova to have a directly confirmed red supergiant progenitor. We compare SN 2003gd with SN 1999em, a similar type II-P supernova, and estimate an explosion date of 18th March 2003. We determine a reddening towards the supernova of E(B-V) = 0.14+/-0.06, using three different methods. We also calculate three new distances to M74 of 9.6+/-2.8 Mpc, 7.7+/-1.7 Mpc and 9.6+/-2.2 Mpc. The former was estimated using the Standardised Candle Method (SCM), for type II supernovae, and the latter two using the Brightest Supergiants Method (BSM). When combined with existing kinematic and BSM distance estimates, we derive a mean value of 9.3+/-1.8 Mpc. SN 2003gd was found to have a lower tail luminosity compared to other ``normal'' type II-P SNe bringing into question the nature of this supernova. We present a discussion concluding that this is a ``normal'' type II-P supernova which is consistent with the observed progenitor mass of 8(+4/-2) Mo.Comment: 23 pages, 24 figures to appear in MNRA

    Star Formation in the Most Distant Molecular Cloud in the Extreme Outer Galaxy: A Laboratory of Star Formation in an Early Epoch of the Galaxy's Formation

    Full text link
    We report the discovery of active star formation in Digel's Cloud 2, which is one of the most distant giant molecular clouds known in the extreme outer Galaxy (EOG). At the probable Galactic radius of ~20 kpc, Cloud 2 has a quite different environment from that in the solar neighborhood, including lower metallicity, much lower gas density, and small or no perturbation from spiral arms. With new wide-field near-infrared (NIR) imaging that covers the entire Cloud 2, we discovered two young embedded star clusters located in the two dense cores of the cloud. Using our NIR and 12CO data as well as HI, radio continuum, and IRAS data in the archives, we discuss the detailed star formation processes in this unique environment. We show clear evidences of a sequential star formation triggered by the nearby huge supernova remnant, GSH 138-01-94. The two embedded clusters show a distinct morphology difference: the one in the northern molecular cloud core is a loose association with isolated-mode star formation, while the other in the southern molecular cloud core is a dense cluster with cluster-mode star formation. We propose that high compression by the combination of the SNR shell and an adjacent shell caused the dense cluster formation in the southern core. Along with the low metallicity range of the EOG, we suggest that EOG could be an excellent laboratory for the study of star formation processes, such as those triggered by supernovae, that occured during an early epoch of the Galaxy's formation. In particular, the study of the EOG may shed light on the origin and role of the thick disk, whose metallicity range matches with that of the EOG well.Comment: Accepted by The Astrophysical Journal (18 pages, 9 figures; a version w/full-resolution color figures is available at http://www.ioa.s.u-tokyo.ac.jp/~naoto/papers/apj.cl2_quirc/ms2p_final.pdf

    Interacting supernovae and supernova impostors. SN 2007sv: the major eruption of a massive star in UGC 5979

    Get PDF
    We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circum-stellar material. The spectra show a blue continuum at early phases and prominent Balmer lines in emission, however, the absolute magnitude at the discovery of SN 2007sv (M_R = - 14.25 +/- 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition we find no unequivocal evidence of broad lines of alpha - and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.Comment: Accepted for publication in MNRAS. 15 pages, 11 figures, 5 table

    Zooming In on the Progenitors of Superluminous Supernovae With the HST

    Full text link
    We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs) (which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form, and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.Comment: ApJ in press; matches published version. Minor changes following referee's comments; conclusions unchange

    Sensing the gas metal arc welding process

    Get PDF
    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved

    The Anomaly in the Candidate Microlensing Event PA-99-N2

    Get PDF
    The lightcurve of PA-99-N2, one of the recently announced microlensing candidates towards M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect and a binary lens. We find that the observations are consistent with an unresolved RGB or AGB star in M31 being microlensed by a binary lens. We find that the best fit binary lens mass ratio is about one hundredth, which is one of most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 solar masses (95 % confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09-32 solar masses, which is consistent with the primary being a stellar remnant and the secondary a low mass star or brown dwarf. The optical depth (or alternatively the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens provided that dark compact objects comprise no less than 15 per cent (or 5 per cent) of haloes.Comment: Latex, 23 pages, 9 figures, in press at The Astrophysical Journa

    Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies

    Get PDF
    We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 < z < 1.6 and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates and metallicities. We find that as a whole, the hosts of SLSNe are a low-luminosity ( ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8 M_sun) population, with a high median specific star formation rate ( ~ 2 Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 + log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an accreting black hole in LGRBs.Comment: ApJ in press; updated to match accepted version. Some additional data added, discussion of selection effects expanded; conclusions unchanged. 22 pages in emulateapj forma

    Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104

    Get PDF
    We report the discovery and multi-wavelength data analysis of the peculiar optical transient, ATLAS17aeu. This transient was identified in the skymap of the LIGO gravitational wave event GW170104 by our ATLAS and Pan-STARRS coverage. ATLAS17aeu was discovered 23.1hrs after GW170104 and rapidly faded over the next 3 nights, with a spectrum revealing a blue featureless continuum. The transient was also detected as a fading x-ray source by Swift and in the radio at 6 and 15 GHz. A gamma ray burst GRB170105A was detected by 3 satellites 19.04hrs after GW170104 and 4.10hrs before our first optical detection. We analyse the multi-wavelength fluxes in the context of the known GRB population and discuss the observed sky rates of GRBs and their afterglows. We find it statistically likely that ATLAS17aeu is an afterglow associated with GRB170105A, with a chance coincidence ruled out at the 99\% confidence or 2.6σ\sigma. A long, soft GRB within a redshift range of 1z2.91 \lesssim z \lesssim 2.9 would be consistent with all the observed multi-wavelength data. The Poisson probability of a chance occurrence of GW170104 and ATLAS17aeu is p=0.04p=0.04. This is the probability of a chance coincidence in 2D sky location and in time. These observations indicate that ATLAS17aeu is plausibly a normal GRB afterglow at significantly higher redshift than the distance constraint for GW170104 and therefore a chance coincidence. However if a redshift of the faint host were to place it within the GW170104 distance range, then physical association with GW170104 should be considered.Comment: 16 pages, 6 figures, accepted to Ap
    corecore