125 research outputs found

    Allele-Specific Small Interfering RNA Corrects Aberrant Cellular Phenotype in Keratitis-Ichthyosis-Deafness Syndrome Keratinocytes.

    Get PDF
    Keratitis-ichthyosis-deafness (KID) syndrome is a severe, untreatable condition characterized by ocular, auditory, and cutaneous abnormalities, with major complications of infection and skin cancer. Most cases of KID syndrome (86%) are caused by a heterozygous missense mutation (c.148G>A, p.D50N) in the GJB2 gene, encoding gap junction protein Cx26, which alters gating properties of Cx26 channels in a dominant manner. We hypothesized that a mutant allele-specific small interfering RNA could rescue the cellular phenotype in patient keratinocytes (KCs). A KID syndrome cell line (KID-KC) was established from primary patient KCs with a heterozygous p.D50N mutation. This cell line displayed impaired gap junction communication and hyperactive hemichannels, confirmed by dye transfer, patch clamp, and neurobiotin uptake assays. A human-murine chimeric skin graft model constructed with KID-KCs mimicked patient skin in vivo, further confirming the validity of these cells as a model. In vitro treatment with allele-specific small interfering RNA led to robust inhibition of the mutant GJB2 allele without altering expression of the wild-type allele. This corrected both gap junction and hemichannel activity. Notably, allele-specific small interfering RNA treatment caused only low-level off-target effects in KID-KCs, as detected by genome-wide RNA sequencing. Our data provide an important proof-of-concept and model system for the potential use of allele-specific small interfering RNA in treating KID syndrome and other dominant genetic conditions

    Ethics-in-practice in fragile contexts: research in education for displaced persons, refugees and asylum seekers

    Get PDF
    The rising numbers of forcibly displaced peoples on the move globally, and the challenges with providing access to education, reflects the shifting and complex times that we live in. Even though there has been a proliferation in educational research in the context of forced migration, in line with the increasing number of forced migrants, there has not been a commensurate focus on unpicking the increasingly complex ethical conditions within which researchers and participants operate. To examine this issue, the article provides three narrated accounts by researchers in this field and explores the interaction of researcher and researcher-author voice to critically appraise their research experience and identify critical reflections of understanding of ethics-in-practice in fragile contexts. These narratives are framed by the CERD ethical appraisal framework which explores ethical thinking through four ethical lenses – Consequential, Ecological, Relational and Deontological. The article contributes to a deeper understanding of ethics-in-practice as a central dimension in educational research. The implications of this work show how one-size-fits-all approach to ethical appraisal is inappropriate for a socially just educational research. This work also illustrates the importance of attending to relationships and voice of the forcibly displaced, both of which are often lacking in educational research in fragile contexts

    Not Managing Expectations: A Grounded Theory of Intimate Partner Violence From the Perspective of Pakistani People

    Get PDF
    Intimate partner violence (IPV) is a major social and public health problem affecting people from different cultures and societies. Much research has been undertaken to understand the phenomenon, its determinants, and its consequences in numerous countries. However, there is a paucity of research on IPV in many areas of the world including Pakistan. The present study aimed to develop a theory of the meaning and process of IPV from the perspective of Pakistani men and women living in and outside Pakistan

    Population-scale proteome variation in human induced pluripotent stem cells

    Get PDF
    Human disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines. We characterised the major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein-coding sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide level resolution

    Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone

    Get PDF
    It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions
    • …
    corecore