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Abstract Human disease phenotypes are driven primarily by alterations in protein expression

and/or function. To date, relatively little is known about the variability of the human proteome in

populations and how this relates to variability in mRNA expression and to disease loci. Here, we

present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC),

a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with

integrated transcriptome and genomic sequence data from the same lines. We characterised the

major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed

key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein

quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein-coding

sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants

that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide

level resolution.

Introduction
Induced pluripotent stem cells (iPSC) hold great promise for advancing basic research and biomedi-

cine. By enabling the in vitro reconstitution of development and cell differentiation, iPS cells allow

the investigation of mechanisms underlying development and the aetiology of many forms of genetic

disease. To realize this potential, it is essential to characterise genetic and non-genetic sources of

variability of molecular and cellular phenotypes in human iPSCs.

Recently, multiple reference panels of human iPSC lines have been established (Kilpinen et al.,

2017; Panopoulos et al., 2017; Carcamo-Orive et al., 2017), providing a valuable resource for

functional experiments in pluripotent cells. These cell lines, together with associated data, have

enabled the characterisation of variability in iPSC transcriptomes, identifying genetic and non-

genetic determinants of expression variation, including expression quantitative trait loci (eQTL)

(Kilpinen et al., 2017; Rouhani et al., 2014; DeBoever et al., 2017) in cis.

While RNA-centric analyses are informative for studying gene regulatory mechanisms at the tran-

scriptional level, most cellular phenotypes ultimately involve downstream mechanisms that are medi-

ated by proteins. Several proteogenomics studies, primarily in cancer (Zhang et al., 2014;

Mertins et al., 2016), have underlined the relevance of protein measurements to interpreting how

genomic changes act at the phenotypic level. Moreover, recent evidence has shown that genetic
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alterations can have effects on RNA that are attenuated at the protein level (Gonçalves et al., 2017;

Roumeliotis et al., 2017). Vice versa, the mapping of protein quantitative trait loci (pQTL), predomi-

nantly in lymphoblast cell lines (Battle et al., 2015; Stark et al., 2014; Wu et al., 2013) and for the

plasma proteome (Sun et al., 2018; Yao et al., 2018; Liu et al., 2015; Johansson et al., 2013;

Lourdusamy et al., 2012), has revealed genetic effects on protein traits that do not manifest at the

RNA level. However, the extent of RNA-independent protein regulation is not yet understood, with

previous analyses performed only at gene-level resolution and, in some cases, without comparing

protein and RNA data from the same cellular material.

Here, we report the first comprehensive, population-scale, combined proteomic and transcrip-

tomic analysis of human iPSC lines. Our data provide matched quantitative proteomic (Tandem

Mass Tag Mass Spectrometry) and transcriptomic (RNA-Seq) profiles of 202 iPSC lines, derived from

151 donors from the HipSci project (Kilpinen et al., 2017). We identify both genetic and non-

genetic effects associated with variability in protein expression between individuals and describe the

first high-resolution pQTL map in human iPSCs, including loci not detected as eQTLs at the RNA

level.

Results

A population reference proteome for human iPSCs
A set of 217 iPSC lines from the HipSci project (Kilpinen et al., 2017), derived from 163 distinct

donors, was selected for protein analysis, using material from the identical batches of cells that were

used for RNA-Seq and other assays (Materials and methods). Quantitative mass spectrometry was

carried out in batches of 10 lines, using tandem mass tagging (TMT, Thompson et al., 2003), with

one common reference sample shared across batches (Brenes et al., 2018) (Materials and methods).

Collectively, we identified 255,015 distinct (unmodified) peptide sequences, corresponding to

16,773 protein groups (groups of protein isoforms with no discriminating peptides; hereon denoted

proteins) with median sequence coverage of 46%.

After quality control, 202 lines (from 151 donors) with matched genotype, RNA-Seq and prote-

ome data, were selected for further analysis (Figure 1a; Figure 1—figure supplement 1; Figure 1—

source data 1). We identified 11,140 recurrently detected proteins, corresponding to 10,198 genes

(detected in at least 30 lines; Materials and methods) and RNA expression for 12,363 protein-coding

genes (population average TPM >1). Out of these, 9013 protein coding genes were detected both

at the RNA and protein levels (Figure 1—source datas 2 and 3).

Collectively, these data provide the most comprehensive analysis of the human iPSC proteome

reported to date, and one of the most comprehensive proteomic datasets reported for any human

primary, or derived, cell type (Supplementary file 1). When overlaying our data with the Human Pro-

teome Map (Kim et al., 2014), the iPSC proteome was most similar to foetal and reproductive

organs (Figure 1—figure supplement 2), which is consistent with the expected expression of pluri-

potency markers in these tissues (Kerr et al., 2008a; Kerr et al., 2008b). We also assessed differen-

ces between healthy donors and disease-bearing donors, identifying no systematic expression

differences in the iPSC state (Supplementary file 2; Figure 1—figure supplement 3).

RNA and proteome variability
We assessed a range of factors to explain the variation in protein expression between iPSC lines.

Leveraging our experimental design with data from two or more lines for 34% of donors, we

assessed the effects of donor, alongside age, sex, and the contributions of technical and cell culture

related factors (on 6009 genes; Figure 1b,d; Figure 1—source data 4; using a linear mixed model;

Materials and methods). Overall, the fraction of variance explained by biological factors was lower

for protein levels, compared to RNA variation, which points to higher assay noise and/or stochastic

variability of protein abundance. Consistent with previous results using RNA data (Kilpinen et al.,

2017), we identified donor genome (i.e. DNA sequence variation) as the most relevant factor, fol-

lowed by culture medium (Figure 1b). Critically, however, significant donor effects remained after

accounting for RNA variability (Figure 1b,d; Figure 1—figure supplement 4;

Materials and methods). This indicates that (i) genetic differences between individual donors and

experimental differences between culture conditions play an important role in causing the observed
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Figure 1. | Characterising variation in the iPSC proteome and transcriptome. (a) Experimental design and assays considered in this study. Genotype,

RNA-Seq and quantitative proteomics data were obtained from the same cell material of 202 iPSC lines derived from 151 unrelated donors. (b) Variance

component analysis of RNA and protein abundances across genes, considering different technical and biological factors. Shown is the distribution of

the fraction of variance explained by different factors (upper panel) across proteins, and the number of genes with substantial variance contribution for

each factor (>20% contribution; lower panel). Also shown are the number of genes that retain greater than 20% contribution after adjusting for the

effect of the corresponding RNA profiles on protein abundance (light blue; see Materials and methods). (c) Association of protein level with X

chromosome inactivation (XCI) status across 110 female iPSC lines. Shown are lowess regression curves for 322 and 312 proteins respectively that were

identified as significantly up (red) - and down (blue) - regulated with loss of XCI in female iPSC lines (lower panel; 10% FDR). Selected gene ontology

enrichments for these sets of proteins are shown (right-hand panel; Materials and methods). XCI status was estimated as the average fraction of allele-

specific expression for the inactive chromosome across all chromosome X genes (Materials and methods). (d) Scatter plot of the fraction of variance

explained by donor at the RNA (x-axis) versus protein (y-axis) level. Encoded in colour is the fraction of variance explained by donor effects at the

protein level after adjusting for the effect of the corresponding RNA profiles on protein abundance (Materials and methods).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. HipSci proteomics iPSC lines.

Source data 2. RNA gene level expression across the 202 lines for genes recurrently detected at the protein level.

Source data 3. Protein abundance values across the 202 and reference lines for genes recurrently detected at the protein level and with RNA expres-

sion (TPM >1).

Source data 4. Protein and RNA variance components.

Source data 5. Protein and RNA correlation with X chromosome inactivation.

Source data 6. Functional enrichment of genes with protein or RNA profiles correlated with XCI.

Figure supplement 1. Protein quantification, quality control and batch correction.

Figure supplement 2. Comparison of iPSC proteome and somatic human tissues.

Figure supplement 3. Comparison of the iPS transcriptome and proteome of disease and normal lines.

Figure supplement 4. Comparisons of variance component estimates before and after regressing out mRNA effects.

Figure 1 continued on next page
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variation in proteome expression between the iPSC lines and (ii) post-transcriptional mechanisms

also contribute to these effects. Notably, many of the proteins showing strong donor effects were

previously identified as differentially expressed between reprogrammed iPS cells and embryonic

stem cells (ESCs) (Phanstiel et al., 2011; Munoz et al., 2011), suggesting that some of these previ-

ously reported differences could be due to genetic variation between donors, rather than intrinsic

differences between the iPSC and ESC cell types (Figure 1—figure supplement 5).

The sex of the donor affected proteome expression, including a subset of proteins uniquely

encoded on the male-specific X chromosome. There was also a strong (i.e. >20%) gender-related

effect on the expression of a subset of 88 proteins (Figure 1b), which are enriched for proteins

encoded on the X chromosome (Odds ratio = 24.8, PV = 3�10�32, Fisher’s exact test). This reflected

the partial erosion of X chromosome inactivation (XCI) observed in a subset of iPSC lines derived

from female donors, as confirmed both by quantification of allele-specific expression and XIST

expression in these lines (Figure 1—figure supplement 6). Incomplete XCI has been linked previ-

ously to poor iPSC differentiation and changes in RNA levels (Mekhoubad et al., 2012;

Salomonis et al., 2016). However, our data provide the first opportunity to link the XCI status of

110 distinct female iPSC lines (as inferred from allele-specific expression; Materials and methods;

Figure 1—figure supplement 6), with changes in the abundance of both proteins and RNAs. This

identified 1374 genes for which either protein, or RNA levels, or both, showed changes correlated

with XCI status (Figure 1c, FDR < 10%; Figure 1—source data 5). Further analysis indicated that

XCI status preferentially impacts catabolic processes and mitochondria at the protein level, while

this was not observed at the RNA level (Gene Ontology; Materials and methods; Figure 1c; Fig-

ure 1—source data 6). These data thus reveal an important effect of XCI status on global gene

expression in iPSC lines from female donors, including specific effects at the protein level that are

not detected by transcriptomic analysis.

Mapping cis genetic effects on protein abundance
Next, we mapped cis quantitative trait loci at both the RNA and protein levels, considering 8543

autosomal protein coding genes that were quantified at both levels (MAF >5%; within +/- 250 kb of

the gene boundaries; using a linear mixed model; Materials and methods). The number of pQTLs

identified was greatly increased by adapting the PEER-based adjustment, which was previously

developed for mapping of eQTLs (Stegle et al., 2012), for use with proteomic data

(Materials and methods; Figure 2—figure supplement 1). Across all autosomal genes, we report

654 genes with at least one cis pQTL and 3487 genes with a cis eQTL (FDR < 10% for both eQTL

and pQTL mapping; lead variants only; Figure 2a; Figure 2—source datas 1 and 2). Among these,

273 genes were shared and had identical or correlated lead variants, whereas 82 genes showed evi-

dence for an eQTL and pQTL with independent lead variants (LD-based criterion, r2 <0.1, Figure 2—

source data 1). Genes with substantial donor components, as identified based on the variance com-

ponent analysis (>20%; Figure 1b), were enriched for significant cis pQTL (215 genes out of 962;

Odds ratio = 4.2; Figure 2—figure supplement 2).

To identify DNA sequence variants with effects at both the RNA and protein levels, we consid-

ered the pairwise replication of pQTLs at the RNA level and vice versa (lead QTL variants, defining

‘replication’ as nominal PV <0.01 with consistent effect direction; Materials and methods), which is

more sensitive than assessing overlapping QTL variants. This identified 473 pQTLs (72%) with repli-

cated eQTL effects. Conversely, 893 eQTLs (26%) had replicated protein effects, with globally con-

cordant effect size directions and distance from gene boundaries (Figure 2—figure supplement 3).

Lack of replication of eQTLs at the protein level could arise from a combination of technical and/

or biological factors. We identified the eQTL effect size as a strong predictor for protein replication,

with larger effects being associated with increased replication rates (Figure 2c). To systematically

characterise the determinants of eQTL replication, we considered a random forest model trained to

predict the protein replication status (Figure 2d). In addition to the eQTL effect size, this identified

Figure 1 continued

Figure supplement 5. Donor variance components of proteins differentially expressed between iPSC and ESC.

Figure supplement 6. Quantification of X chromosome inactivation status in female iPSC lines using chromosome X ASE SNPs.
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other predictive factors, including the protein coefficient of error (estimated from technical replicate

samples; Materials and methods) and the protein coefficient of variation across lines (Figure 2d; Fig-

ure 2—source data 2).

To explore the physiological relevance of iPSC pQTL variants, we examined their overlap with var-

iants identified in genome-wide association studies (GWAS). Specifically, we probed for QTLs that

tag GWAS variants contained in the GWAS catalogue (MacArthur et al., 2017) (i.e. are in LD

Figure 2. Human iPSC cis protein and RNA QTLs. (a) Number of genes with a protein (blue) or RNA (green) cis QTL (FDR < 10%) and pairwise

replication of genetic effects. Left: Number of genes with a pQTL, either with (dark blue) or without (light blue) replicated RNA effect. Right: Number of

genes with an eQTL, either with (dark green) or without (light green) replicated protein effect. Replication defined by assessing nominal significance

(PV <0.01) of QTL in the respective other layer. (b) Local Manhattan plots displaying negative log p-values (PV) from cis RNA (top) and protein (bottom)

QTL mapping for PEX6. The dashed line and the grey box indicate the genomic positions of the lead QTL and of the gene. Boxplots show RNA and

protein expression for different alleles at the pQTL lead variant rs11752813, a variant in LD (r2 = 1, 1000 Genomes European populations phase 3) with

the Alzheimer risk variant rs1129187 (Jun et al., 2016) (OR 1.13). (c) Cumulative fraction of eQTLs with replicated protein effects as a function of the

eQTL effect size (from highest to lowest). (d) Prediction of protein replication of eQTLs, considering features derived from gene annotations, eQTL,

RNA and protein data. Predictions were obtained using a random forest model trained on the protein replication status of eQTL (as in a;

Materials and methods). Left: Feature importance scores. Right: Precision-recall curve for the model, evaluated in independent test fractions. The model

performance was assessed by random sampling of training/testing data with a 80/20 split, performed 50 times. Shown in red is the average precision-

recall across all sampled training/test splits and in thin grey lines results of individual folds.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. pQTL_results.

Source data 2. eQTL_results.

Figure supplement 1. Selection of the number of PEER factors to adjust for unwanted variation.

Figure supplement 2. Relationship between estimates of donor variance component and cis pQTLs.

Figure supplement 3. Comparison of eQTL and pQTL effect sizes and genomic positions.

Figure supplement 4. Example iPS eQTL and pQTL variance with evidence for co-localisation with GWAS variants.
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r2 >0.8), identifying 136 (of 654) pQTL signals that tag a known GWAS variant (Figure 2—source

data 1). In addition, we assessed the statistical evidence for co-localisation of pQTL and GWAS sig-

nals for 51 studies for which full summary statistics were obtained (using eCAVIAR

Hormozdiari et al., 2016; Materials and methods; Figure 2—source data 1), yielding 49 pQTLs

with evidence of co-localisation (i.e cumulative co-localisation probability greater than 0.1). Among

these, examples of pQTLs with corresponding effects at the RNA level include the variant

rs7872034, a pQTL for SMC2 with co-localisation evidence for serous invasive ovarian cancer

(Phelan et al., 2017), and the variant rs11752813, a pQTL for PEX6 and in LD with Alzheimer’s dis-

ease in APOE e4+ carriers risk variant rs1129187 (Jun et al., 2016; Figure 2—figure supplement 4;

Figure 2b).

Notably, for 33 pQTLs linked to GWAS variants, either via co-localisation or LD tagging, no repli-

cated effect was identified at the RNA level, suggesting protein-specific regulation (Figure 2—

source data 1). For example, rs11601507 has no RNA effects, and is associated with TRIM5 protein

abundance and with coronary artery disease risk (van der Harst and Verweij, 2018; Figure 2—fig-

ure supplement 4). Such cases raise the question of the mechanisms by which these variants modu-

late protein abundance and, ultimately, phenotypic traits, as addressed below.

pQTL linked to isoform-specific transcript expression
To investigate the mechanisms that underlie discordant eQTLs and pQTLs in more detail, we per-

formed transcript isoform and protein peptide QTL analyses. cis QTL mapping of 33,050 reference

transcript isoforms (Zerbino et al., 2018) (quantified using Salmon Patro et al., 2017;

Materials and methods) and 119,747 peptides identified 3810 genes with a transcript QTL (tQTL)

and 566 genes with a peptide QTL (pepQTL), respectively (Figure 3—figure supplement 1,

Materials and methods, Figure 3—source datas 1 and 2).

Transcript-level QTL mapping could explain the lack of protein effects for a small fraction of the

2594 eQTL without a replicated pQTL effect (Figure 2a). For 48 of these, the eQTL variant was iden-

tified as exclusively associated with abundance changes of non-coding transcript isoforms (nominal

PV <0.01), which explains the absence of protein effects (Figure 3—figure supplement 2). Further-

more, when considering 1262 transcript QTL that neither replicate at the eQTL, nor at the pQTL

level, in 45 instances we observed consistent replication when considering peptide QTL (Figure 3—

figure supplement 2b).

Among 181 pQTLs without eQTL replication (Figure 2a), 61 had nominally significant transcript

QTLs (PV <0.01; Figure 3a). For 12 of these, including a pQTL for MMAB (Figure 3b), we observed

genetic effects with opposite directions on coding and non-coding transcript isoforms, which

explains the lack of genetic effects when considering gene-level RNA abundance.

pQTL arising from protein-altering variants
Next, we set out to characterise further the remaining 120 pQTL without replication at either eQTL,

or transcript QTL levels. When classifying the corresponding lead pQTL variants based on their pre-

dicted functional effect, we identified 24 inframe variants, a striking enrichment compared to pQTL

with replicated RNA effects (3.8-fold enrichment; PV = 4�10�5, Fisher’s exact test; Figure 3c and d).

These findings are in line with previous observations in lymphoblast cell lines (Battle et al., 2015).

Of note, peptides containing protein-altering variants were excluded from the quantifications

(Materials and methods), and the reported pQTL effects were observed for multiple peptides from

the same proteins (Figure 3—figure supplement 3), providing further confidence in genuine regula-

tory effects. We assessed whether the 24 pQTL have effects at the RNA level (eQTL) in other cell

types, and for 11 of these pQTL we did not find evidence of eQTL nominal significance in any of the

48 GTEx (PV <0.01/48; Battle et al., 2017; Figure 1—source data 1), which further points to RNA-

independent mechanisms.

Inframe variants have the potential to affect protein function. We estimated whether a variant is

likely to be deleterious to protein function using SIFT scores, which capture evolutionary conserva-

tion and amino acid similarity (Ng and Henikoff, 2003). This revealed a clear enrichment of the 24

RNA-independent pQTL that tag inframe variants, 10 of which have predicted deleterious effects

(SIFT score <0.05), compared to four among all other pQTL (Odds ratio = 27.5, PV = 3.8�10�8, Fish-

er’s exact test; Figure 3d; Figure 1—source data 1). Putative effects of these variants on protein
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function include loss of enzymatic activity and disruption of protein structure. For example, the vari-

ant rs1051061 in VRK2 lies in a conserved sequence in the kinase domain, proximal to the proton

acceptor residue, likely impacting kinase activity (Figure 3c). The identical variant has been identified

as GWAS risk variant for schizophrenia (Yu et al., 2017) (OR 1.17), with the risk allele being associ-

ated with decreased protein abundance. The effect direction is consistent with previous studies that

have linked decreased VRK2 expression to neurological disorders including schizophrenia

(Azimi et al., 2018; Tesli et al., 2016).

These data show important roles of transcriptional regulation underlying cis pQTL effects, while

also highlighting how isoform-specific effects, which are invisible to standard eQTL mapping

approaches, can be detected at the protein level. For a substantial subset of pQTLs, we identified

linked protein-altering variants, many with deleterious effects. Together with previous observations,

Figure 3. Putative mechanisms of pQTL from transcript isoform regulation and protein-altering variants. (a) Categorisation of 654 pQTL into four classes

according to their putative mechanism: gene expression effect (i.e. replicated at eQTL level), transcript-isoform specific effect (i.e. not replicated at

eQTL level, but significant at transcript isoform level), protein-altering variant (i.e. at least one inframe variant in LD with lead pQTL variant) without

expression effect at RNA level, and without any putative mechanism identified. (b) Example pQTL without eQTL replication (rs6663; gene MMAB), with

a directional opposite effect on a coding and non-coding isoform (cyan: ENST00000540016; grey: ENST00000537496), resulting in no overall change in

gene expression level. (c) The pQTL variant (rs1051061) is a protein-altering variant associated with VRK2 protein abundance (below), and lacks

detectable effect on RNA expression. The pQTL signal is observed across 15 peptides spanning the VRK2 protein sequence (above, left). This variant is

associated with schizophrenia risk, and is located at the kinase active site, proximal to the proton acceptor residue (above, right). The dashed line and

the grey box indicate the genomic positions of the lead QTL and of the gene. (d) Enrichment of RNA-independent pQTL in different categories of

predicted variant effects, using gene variants in high LD with pQTLs (proxy gene variants; r2 >0.8; within the cis gene boundaries). Enrichment

calculated using Fisher’s exact test.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. tQTL_results.

Source data 2. pepQTL results.

Figure supplement 1. Discovery and replication of cis QTLs at protein and RNA levels.

Figure supplement 2. Isoform-specific genetic effects.

Figure supplement 3. Peptide resolution assessment of pQTLs.

Figure supplement 4. Quantification of peptides containing coding polymorphisms.

Mirauta et al. eLife 2020;9:e57390. DOI: https://doi.org/10.7554/eLife.57390 7 of 22

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.57390


these results suggest that proteomics information can aid understanding of pathogenic mechanisms

of deleterious variants.

Proteome-wide effects of cis QTLs
Building on the compendium of cis pQTL identified here in iPS cells, we set out to characterise

downstream proteome-wide changes. We mapped proteome-wide trans pQTL, considering 654 cis

pQTL variants. This identified 51 cis-pQTL lead variants with trans effects on a total of 68 proteins

(FDR < 10%; Figure 4—source data 1; Materials and methods). To rule out synthetic associations,

we discarded associations with evidence for sequence similarity between cis and trans proteins, and

we verified the consistency of the identified trans effects across multiple independent peptides

(Materials and methods; Figure 3—figure supplement 3). The detected pairs of proteins with

shared genetic regulation were strongly enriched for known protein-protein interactions (CORUM

Ruepp et al., 2010, IntAct Orchard et al., 2014, StringDB Szklarczyk et al., 2017; Odds ratio = 9.1,

PV = 1.5�10�10, Fisher’s exact test; Figure 4b). The cis and trans effects had similar effect directions

and effect sizes, consistent with genetic effects mediated via stabilising protein-protein interactions

(Figure 4c). This interpretation of our data in human iPSCs is consistent with the significant donor

variance component we observed for many protein complexes (Figure 4d). It is also consistent with

previous observations in an outbred mouse cross, showing that protein modules sharing genetic

effects in trans are enriched in protein interactions (Ruepp et al., 2010), and identification of trans

protein effects due to somatic aberrations in human cancer cell lines (Gonçalves et al., 2017;

Roumeliotis et al., 2017). Importantly, our results generalise these previous observations to genetic

effects of common variants that segregate in human populations.

In summary, the trans effects we detected appear to induce strong correlations across protein

complex subunits (Figure 4d), whereby a variant associated in cis with one subunit was also associ-

ated in trans with other subunits. This is illustrated by PEX26-PEX6-PEX1, a protein complex involved

in peroxisome biogenesis. As noted above, the underlying pQTL variant rs1129187 is associated in

cis with an increase in both PEX6 RNA and protein abundance (Figure 2b) and is a known risk variant

for Alzheimer’s disease in APOE e4+ carriers (Jun et al., 2016). This cis pQTL in turn induces down-

stream associations on the remaining complex subunits, PEX26 and PEX1 (Figure 4e), suggesting

that PEX6 acts as a limiting subunit of this complex in iPSCs. Thus, our results provide a potential

biological mechanism underlying this risk variant, namely acting through changes in the abundance

of the PEX26-PEX6-PEX1 complex. Notably, there is prior evidence for an implication of peroxisomal

function in the development of Alzheimer’s disease and in other neurodegenerative processes

(Lizard et al., 2012; Berger et al., 2016), providing further support for this hypothesis.

Discussion
Here, we report the first in-depth characterisation of the human iPSC proteome, connecting genetic

variation to changes in RNA and protein levels. Beyond the relevance for iPS cell biology, this study,

to our knowledge, provides the most detailed population-level analysis of parallel RNA/protein pro-

files in human cells. By quantifying genome-wide protein and transcript expression variation across

more than 200 human iPSC lines, we identified both genetic and non-genetic mechanisms that

underlie variation in both protein and RNA levels. We have mapped more than 600 cis protein quan-

titative trait loci (pQTLs) and analysed how these relate to cis eQTLs, how they impact other proteins

in trans, and how pQTLs link to human disease variants.

The variance component analysis explained a lower overall fraction of variance in the protein data

compared to RNA variation, which likely reflects larger technical effects and/or stochasticity in pro-

tein expression levels. Among the explainable fraction of variance, donor-specific genetic factors are

a major contributor to the differences in protein expression detected across the iPSC lines. The cor-

ollary is that protein expression variation across iPS cells reflects genetic diversity in the human pop-

ulation. Consistent with this, we identified 654 common genetic variants associated with changes in

protein abundance.

Globally, there were substantially fewer pQTLs than eQTLs, and while most pQTLs had effects of

the same direction at eQTL, only 30% of eQTLs are nominally significant at the protein level. It is

possible that technical factors resulting from the protein measurement methods may contribute, at

least in part, towards attenuating the signal detected at the protein level. However, considering our
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Figure 4. | Trans effects on the iPSC proteome. (a) Strategy for mapping trans genetic effects on protein abundance. Lead cis pQTL variants were

considered for proteome-wide association analysis. (b) Enrichment of previously catalogued protein-protein interactions among significant trans pQTLs.

Shown is the fraction of cis-trans gene pairs linked by a trans pQTL with evidence of protein-protein interactions (based on the union of CORUM,

IntAct, and StringDB), as a function of the considered FDR threshold for trans pQTL discovery. The dashed lines correspond to FDR < 10%. Numbers

Figure 4 continued on next page
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data in light also of results from previous studies, some of which employed alternative technologies

for protein detection to the MS methods used here, we suggest that the signal attenuation between

eQTL and pQTL levels is not exclusively the result of limitations in protein measurements. Instead,

many eQTLs may reflect variation in RNA abundance that does not cause significant changes in

steady state protein levels.

By the systematic comparison of matched protein and RNA data, including detailed analysis of

separate isoforms, we demonstrated that in order to fully understand the propagation of genetic

effects to proteins, isoform-resolution protein and RNA phenotypes are indispensable. In particular,

this approach identified additional RNA-dependent regulation that manifests in protein QTL,

thereby improving the ability to identify genuine RNA-independent pQTL.

We showed that the pQTLs for which no corresponding changes in transcript levels were

detected, are enriched in deleterious missense variants. This result suggests that the phenotypic

effects of such variations may be exerted through protein abundance changes. Because most delete-

rious variants, and in particular pathogenic variants, are rare, larger sample sizes will be required to

fully assess the protein components of this class of regulatory genetic effects.

Our study presents the first comprehensive map of pQTLs at peptide resolution, considering a

total of 119,747 peptides from 8543 proteins for genetic analysis. This identified 566 peptide QTL,

several of which were not detectable when considering whole protein expression levels, as illustrated

with the variant rs12795503, pepQTL for gene CTTN (Figure 3—figure supplement 1). While we

mapped fewer significant pepQTLs than pQTLs, peptide level analyses were shown here to over-

come potential artefacts raised by protein quantification, in particular when mapping trans pQTL,

and are invaluable in identifying isoform-specific effects.

Our data highlight the ability of protein-protein interactions to propagate genetic effects in

human populations. A long-standing hypothesis has been that certain protein complexes may have a

rate-limiting subunit that determines complex abundance, with any excess subunits produced being

rapidly degraded (e.g. because of exposure of hydrophobic residues). This implies that cis eQTLs

affecting the levels of rate-limiting subunits should also have effects in trans on the abundance of

the whole complex, and on most, if not all, subunits therein. While trans genetic effects were previ-

ously reported to be mediated by protein interactions in high heterozygosity samples, that is out-

bred mice, (Chick et al., 2016) and for somatic aberrations in cancer cell lines (Gonçalves et al.,

2017; Roumeliotis et al., 2017), to our knowledge, this study provides the first example that such

effects act through common genetic variants in untransformed human cells. In the future, the

approach we have taken here could be extended by mendelian randomisation-based approaches to

formally assess the mediating role of the cis pQTL on protein complex members.

Understanding the mechanisms through which genetic variations act in the human population is

of great relevance to characterising risk factors and susceptibility to disease. There is on-going inter-

est in the potential for studying disease mechanisms using disease relevant tissues that are derived

from panels of iPSCs (Cayo et al., 2017; Li et al., 2018; D’Aiuto et al., 2014;

Schwartzentruber et al., 2018). This study provides important information showing how direct anal-

ysis of human iPSCs can advance our understanding of the genetic regulation of protein expression

and how this influences cell phenotypes and disease mechanisms.

Figure 4 continued

indicate the number of trans pQTL identified for each FDR threshold. (c) Comparison of genetic effect sizes, in cis and trans, for significant (FDR < 10%)

trans pQTLs. Red points indicate cis-trans pairs with evidence for protein-protein interactions defined as in b. (d) Left: Protein co-expression of protein

complex subunits defined based on CORUM. Right: i) subunit with the most significant cis pQTL; ii) fraction of subunits in association with the cis pQTL

at nominal significance (PV <0.01). iii) fraction of the average cluster protein expression level explained by donor effects. (e) Trans regulation of the

PEX26-PEX6-PEX1 complex. The variant rs11752813 (LD r2 = 1 with rs1129187) is associated in cis with changes in the RNA and protein abundance of

PEX6 and in trans with changes in the protein abundance of PEX1 and PEX26.

The online version of this article includes the following source data for figure 4:

Source data 1. trans-pQTL_results.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo-sapiens)

iPSC www.hipsci.org RRID:SCR_003909

Software,
algorithm

MaxQuant https://www.
maxquant.org/

RRID:SCR_014485

Software,
algorithm

Trim Galore https://www.
bioinformatics.
babraham.ac.uk/
projects/trim_galore/

RRID:SCR_011847

Software,
algorithm

STAR https://www.ncbi.
nlm.nih.gov/pmc/
articles/PMC3530905/

RRID:SCR_015899

Software,
algorithm

Salmon https://combine-lab.
github.io/salmon/

NA

Software,
algorithm

g:Profiler http://biit.cs.ut.
ee/gprofiler/

RRID:SCR_006809

Software,
algorithm

eCAVIAR http://zarlab.cs.
ucla.edu/tag/ecaviar/

NA

Software,
algorithm

VEP https://www.
ensembl.org/info/
docs/tools/vep/
index.html

RRID:SCR_007931

Software,
algorithm

MutFunc http://www.mutfunc.com/ NA

Software,
algorithm

Limix https://github.
com/limix/limix

NA

Software,
algorithm

Peer http://www.sanger.
ac.uk/resources/
software/peer/

RRID:SCR_009326

Software,
algorithm

Scikit-learn http://scikit-learn.org/ RRID:SCR_002577

Cell lines
As described in Kilpinen et al., 2017, all HipSci samples were collected from consented research

volunteers recruited from the NIHR Cambridge BioResource, and iPSC were generated from fibro-

blasts by transduction with Sendai vectors. In brief, cells were cultured on fibroblasts (MEF-CF1)

feeder layer with selected lines being transferred on Essential 8 (E8) medium. Pluripotency was

assessed based on expression profiling, detection of pluripotency markers in culture and response

to differentiation inducing conditions. Mycoplasma screening was performed using a standard PCR

kit. Sample identity was confirmed using a Fluidigm genotyping assay containing 24 SNPs. The ID

numbers and details for each cell line included in this analysis are listed in Figure 1—source data 1.

RNA-Seq data processing
Raw RNA-Seq data for 331 samples were obtained from the ENA project: ERP007111. CRAM files

were merged on a sample level and were converted to FASTQ format. Sequencing reads were

trimmed to remove adapters and low-quality bases (using Trim Galore! Dobin et al., 2013), followed

by read alignment using STAR (version: 020201) (Liao et al., 2014), using the two-pass alignment

mode and the default parameters as proposed by ENCODE (c.f. STAR manual). All alignments were

relative to the GRCh37 reference genome, using ENSEMBL 75 as transcript annotation

(Zerbino et al., 2018).

Samples with low-quality RNA-Seq were discarded, if they had less than 2 billion bases aligned,

had less than 30% coding bases, or had a duplication rate higher than 75%. This resulted in 323 lines

for analysis, of which 202 had matched proteome data.
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Gene-level RNA expression was quantified from the STAR alignments using featureCounts

(v1.6.0) (Robinson et al., 2010), which was applied to the primary alignments using the ‘-B’ and ‘-C’

options in stranded mode, using the ENSEMBL 75 GTF file. Quantifications per sample were merged

into an expression table using the following normalisation steps. First, gene counts were normalized

by gene length. Second, the counts for each sample were normalised by sequencing depth using

the edgeR adjustment (McAlister et al., 2014).

Transcript isoform expression was quantified directly from the (unaligned) trimmed reads using

Salmon (Zerbino et al., 2018) (version: 0.8.2), using the ‘–seqBias’, ‘–gcBias’ and ‘VBOpt’ options

in ‘ISR’ mode to match our inward stranded sequencing reads. The transcript database was built on

transcripts derived from ENSEMBL 75. The TPM values as returned by Salmon were combined into

an expression table.

Quantitative proteomics data generation
Upon establishment in culture, lines were expanded for banking and molecular assays (including

genomics, transcriptomics and proteomics). We selected 217 lines (banked frozen pellets) for in-

depth proteomic analysis with Tandem Mass Tag Mass Spectrometry. A subset of 202 lines (112 nor-

mal and 90 disease; Figure 1—source data 1) with matched mRNA and protein data were consid-

ered for further analysis. Previous studies have shown that this sample size enables the identification

of a large number of cis RNA and protein QTLs (Battle et al., 2015).

Sample preparation
For protein extraction, frozen iPSC cell pellets were washed with ice cold PBS and redissolved imme-

diately in 200 mL of lysis buffer (8 M urea in 100 mM triethyl ammonium bicarbonate (TEAB) and

mixed at room temperature for 15 min. DNA in the cell lysates was sheared using ultrasonication (6

� 20 s at 10˚C). The proteins were reduced using tris-carboxyethylphosphine TCEP (25 mM) for 30

min at room temperature, then alkylated in the dark for 30 min using iodoacetamide (50 mM). Total

protein was quantified using the fluorescence based EZQ assay (Life Technologies). The lysates were

diluted four-fold with 100 mM TEAB for the first protease digestion with mass spectrometry grade

lysyl endopeptidase, Lys-C (Wako, Japan), then diluted a further 2.5-fold before a second digestion

with trypsin. Lys-C and trypsin were used at an enzyme to substrate ratio of 1:50 (w/w). Digestions

were carried out for 12 hr at 37˚C, then stopped by acidification with trifluoroacetic acid (TFA) to a

final concentration of 1% (v:v). Peptides were desalted using C18 Sep-Pak cartridges (Waters) follow-

ing manufacturer’s instructions and dried.

Tandem Mass Tag mass spectrometry analysis
For Tandem Mass Tag (TMT)-based quantification, the dried peptides were redissolved in 100 mM

TEAB (50 mL) and their concentration was measured using a fluorescent assay (CBQCA) (Life Tech-

nologies). 100 mg of peptides, from each cell line to be compared, in 100 mL of TEAB were labelled

with a different TMT tag (20 mg ml�1 in 40 mL acetonitrile) (Thermo Scientific), for 2 hr at room tem-

perature. After incubation, the labelling reaction was quenched using 8 ml of 5% hydroxylamine

(Pierce) for 30 min and the different cell lines/tags were mixed and dried in vacuo. TMT-ten plex was

used to label ten IPSC lines and quantify them in parallel. In total, 24 TMT-ten plex experiments

were performed, where one IPSC line (HPSI0314i-bubh_3) was chosen as a reference cell line and

was kept constant in all TMT batches. The other nine quantification channels were used to label 9

different cell lines. No randomisation was applied in assigning the samples to batches.

The TMT samples were fractionated using off-line, high pH reverse phase chromatography: sam-

ples were loaded onto a 4.6 � 250 mm Xbridge BEH130 C18 column with 3.5 mm particles (Waters).

Using a Dionex bioRS system, the samples were separated using a 25 min multistep gradient of sol-

vents A (10 mM formate at pH 9) and B (10 mM ammonium formate pH 9 in 80% acetonitrile), at a

flow rate of 1 ml/min. Peptides were separated into 48 fractions, which were consolidated into 24

fractions. The fractions were subsequently dried and the peptides redissolved in 5% formic acid and

analysed by LC-MS.

5% of the material was analysed using an orbitrap fusion tribrid mass spectrometer (Thermo Sci-

entific), equipped with a Dionex ultra high-pressure liquid chromatography system (nano RSLC). RP-

LC was performed using a Dionex RSLC nano HPLC (Thermo Scientific). Peptides were injected onto
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a 75 mm � 2 cm PepMap-C18 pre-column and resolved on a 75 mm � 50 cm RP- C18 EASY-Spray

temperature controlled integrated column-emitter (Thermo), using a 4-hr multistep gradient from

5% B to 35% B with a constant flow of 200 nL min�1. The mobile phases were: 2% ACN incorporat-

ing 0.1% FA (Solvent A) and 80% ACN incorporating 0.1% FA (Solvent B). The spray was initiated by

applying 2.5 kV to the EASY-Spray emitter and the data were acquired under the control of Xcalibur

software in a data-dependent mode using top speed and 4 s duration per cycle. The survey scan is

acquired in the orbitrap covering the m/z range from 400 to 1400 Th, with a mass resolution of

120,000 and an automatic gain control (AGC) target of 2.0 e5 ions. The most intense ions were

selected for fragmentation using CID in the ion trap with 30% CID collision energy and an isolation

window of 1.6 Th. The AGC target was set to 1.0 e4 with a maximum injection time of 70 ms and a

dynamic exclusion of 80 s.

During the MS3 analysis for more accurate TMT quantifications, five fragment ions were co-iso-

lated using synchronous precursor selection, using a window of 2 Th and further fragmented using a

HCD collision energy of 55% (McAlister et al., 2014). The fragments were then analysed in the orbi-

trap with a resolution of 60,000. The AGC target was set to 1.0 e5 and the maximum injection time

was set to 105 ms.

Proteomics data processing
The TMT-labelled samples (24 batches of TMT-ten plex) were analysed using MaxQuant v. 1.6.0.13

(Cox et al., 2011; Schwanhäusser et al., 2011). Proteins and peptides were identified using the Uni-

Prot human reference proteome database (Swiss Prot + TrEMBL) release-2017_03, using the

Andromeda search engine. Run parameters and the raw MaxQuant output have been deposited at

PRIDE (PXD010557).

The following search parameters were used: reporter ion quantification, mass deviation of 6 ppm

on the precursor and 0.5 Da on the fragment ions; Tryp/P for enzyme specificity; up to two missed

cleavages, ‘match between runs’, ‘iBAQ’. Carbamidomethylation on cysteine was set as a fixed mod-

ification. Oxidation on methionine, pyro-glu conversion of N-terminal Gln, deamidation of aspara-

gine and glutamine and acetylation at the protein N-terminus, were set as variable modifications

(Cox and Mann, 2008; Cox et al., 2011; Schwanhäusser et al., 2011; Tyanova et al., 2016).

Peptides and protein groups, that is groups of protein isoforms identified by common peptides

(for details see Brenes et al., 2018), were reported at FDR < 5%. The same FDR threshold was used

for reporting the Peptide Spectrum Matches (PSM). We performed the FDR calculation on an

extended set and removed the Razor Protein FDR calculation constraint (for more details see refer-

ence Ramasamy et al., 2013). In total, we identified 255,015 peptides detected in at least one sam-

ple (after removing reverse and contaminant peptides; on the 217 lines and 23 replicates of the

reference line), which corresponds to 16,773 protein groups.

Quality control and quantification
Peptides that overlap non-synonymous variants may be incorrectly detected and could result in syn-

thetic associations, similarly to the polymorphism-in-probe effects in microarrays (Schlaffner et al.,

2017). We performed the following quality control and filtering steps. First, using PoGo;

(Lippert et al., 2015) (applied with Gencode release 30 mapped on GRCh 37), we reconstructed the

genomic loci of 250,171 peptides that could be assigned to one or multiple genomic locations.

Next, we assessed the overlap of these peptides with common, non-synonymous variants in human

populations (MAF >0.01 in 1000 Genomes European populations phase 3). To define non-synony-

mous variants, we considered the overlap with any transcript isoform that contains the analysed pep-

tide obtained from Gencode release 30 mapped on GRCh 37. This resulted in 6273 peptides that

overlap such polymorphisms, which were discarded from further analyses (Supplementary file 3).

Peptides mapped to multiple locations in the genome were discarded if they overlap non-synony-

mous variants for at least one of these locations. Finally, we discarded 4844 peptides for which a

genetic position was not identified.

We discarded 10 lines with fewer than 67,000 identified peptides (corresponding to 75% of the

median number of peptides identified; Figure 1—figure supplement 1), resulting in a proteomics

dataset consisting of 207 lines, 202 of which had matched RNA-Seq data and hence were considered
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for further analysis. In addition, the technical replicates for the included reference line in each TMT

batch were retained to aid the normalisation of protein quantifications between batches; see below.

Protein group abundances were estimated using the remaining peptides as the sum of the inten-

sities of individual peptides mapped to the protein group. Peptide abundance estimates were

obtained from the intensity values reported in the ‘Peptides’ file from MaxQuant.

For downstream analysis, we considered the subset of peptides that were recurrently detected in

at least 30 of the 202 lines. Similarly, we discarded all protein groups that did not contain at least

one recurrent peptide. This resulted in a final dataset of 11,140 recurrent protein groups and

132,078 recurrent peptides (Figure 1—figure supplement 1), corresponding to 10,198 genes

(Ensembl ID).

To adjust for technical effects during the acquisition of protein data in TMT batches, we scaled

the abundance estimate for each feature (i.e. protein or peptide) as follows. For each feature and

batch, we multiply the intensity with a scaling coefficient defined as the ratio between the median

intensity across all lines and the median across the subset of lines within a given TMT batch. Next,

we employed quantile normalisation for peptide and protein abundance estimates, by performing

quantile normalisation of the feature distribution in each line relative to a normalisation reference

line (the line with the highest number of total peptides detected). Briefly, for each line we assigned

for each feature the value observed in the reference line corresponding to the rank of the value of

that feature in the line to be normalised: y’pl = r [rank ypl ], where ypl are the intensity values for fea-

ture p and line l obtained after batch scaling, r is the sorted vector of intensities from the normalisa-

tion reference line, and y’pl is the normalised value. In order to evaluate how the data transformation

tackles batch effects, we performed a PCA analysis of protein quantifications and compared the

peptide coefficient of error before and after data transformation (Figure 1—figure supplement 1d

and e).

Assessment of TMT ratio compression effects
We assessed quantitative compression of our proteomics data by examining changes in peptide

abundance for those peptides that were discarded because they overlap non-synonymous variants,

following Battle et al., 2015. The rationale behind this approach is that a non-synonymous variant in

a peptide prevents detection of that peptide, as its sequence will not exist in the proteome refer-

ence. Thus, in samples heterozygous for the non-synonymous variants, the measured peptide abun-

dance is expected to be half of that of samples homozygous for the reference variant. Although the

data indicated that ratio compression effects can be noticed in our study (Figure 3—figure supple-

ment 4), the QTL results show that protein measurements derived from TMT Mass spectrometry

analyses are suitable for the detection of protein abundance changes.

Comparisons of iPSC proteome profiles to existing datasets
To compare our iPSC proteome dataset to the Human Proteome Map (HPM) (Kim et al., 2014; Fig-

ure 1—figure supplement 1d), we first mapped the RefSeq IDs of proteins quantified in the HPM to

UniProt IDs. We considered the subset of 8333 proteins that were expressed in our iPSC dataset

and in at least one HPM tissue, and for which IDs could be mapped. We then calculated spearman

correlation coefficients between the aggregate iPSC proteome abundance profile (averaged across

lines) and each HPM tissue.

Variance component analysis
In order to calculate the contribution of each factor k to variation in protein abundance, we fitted a

random effects model as follows: y = m +
P

k uk + e ; uk ~ N(0, sk
2 � Mk ); e ~ N(0, sr

2 � I); Mk [i, j] = {1 if

fk [i] = fk [j]; 0 if fk [i ] 6¼ fk [j]).

where y denotes the (N x 1) vector of normalised log protein abundances, uk are the random

effects, Mk is the (N x N) covariance structure, skis the standard deviation, and e is the residual (i.i.d.

noise). The random effect components are defined based on a categorical covariance function

defined on covariates fk, that is the vector of observed values for factor k (e.g. fk [i] 2 {0male0,
0female0} when k is the donor sex component). We considered donor identity, donor sex, donor age

(treated as a categorical variable, with each group in age windows of 5 years), culture medium, TMT

batch, and TMT channel as random effect components. In order to accurately estimate the donor
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variance component, we restricted this analysis to the set of lines from the subset of 51 donors for

which two cell lines were assayed and on 6009 genes with TPM >1 and with proteins detected in

this subset of lines. Analogous analyses were considered for RNA abundance, leaving out the TMT-

specific, random effects.

In order to study the effect of different factors on protein abundance, after adjusting for the

effects of RNA abundance on protein abundance, we also applied the variance decomposition analy-

sis to protein abundance values after adjusting for RNA variation. Adjusted protein abundances

were calculated by regressing out the effects of RNA abundance (i.e. gene-level quantifications of

RNA), on protein abundance for each RNA-protein pair. To do this, we fitted a linear model between

RNA and protein abundances across lines (using the Numpy function poly1d in Python), taking the

model residuals as the adjusted protein abundance values. Variance decomposition models were

then fitted as described above.

All variance component models were fitted using the LIMIX package (https://github.com/PMBio/

limix; https://doi.org/10.1101/003905) (Reimand, 2016).

Quantification of X chromosome inactivation (XCI)
The X chromosome inactivation (XCI) status of female cell lines was quantified using allele-specific

counts from RNA-Seq reads mapping to the X chromosome. These allele-specific counts were

obtained for SNPs present in DBSNP using GATK ReadCounter with the command ‘GenomeAnaly-

sisTK.jar -T ASEReadCounter -U ALLOW_N_CIGAR_READS –minMappingQuality 10 –minBase-

Quality 2’. For known heterozygous SNPs in each line, the allele-specific fraction of expression was

defined as the fraction of reads mapping to the less expressed allele (i.e. the allele-specific fraction

was �0.5). The XCI status of each cell line was then defined as the mean of the allele-specific frac-

tions across all heterozygous X chromosome SNPs with at least 20 overlapping reads in the corre-

sponding RNA-Seq sample.

Gene ontology enrichment was performed against the 6335 genes included in the XCI analysis

using g:Profiler (Ongen et al., 2016), and p-values were adjusted for multiple testing using the Ben-

jamini-Hochberg FDR procedure.

QTL mapping of RNA and protein traits
Cis QTL mapping
We used PEER (Stegle et al., 2012) to account for unwanted variation and confounding factors.

PEER was applied to log normalised protein abundance and log normalised gene TPM, considering

the most highly expressed 10,000 proteins and genes, respectively. We fit 7 PEER factors for protein

and 13 PEER factors for RNA, settings that were determined as the largest number of PEER factors

that retain statistical independence of the inferred factors (R < 0.7; Figure 2—figure supplement 1).

For cis genetic analyses, we considered common variants (MAF >5%) in gene-proximal regions of

250 k upstream and downstream of gene transcription start and end sites (GRCh37). The chosen size

of this cis analysis window is a compromise between comprehensiveness to detect distal regulatory

elements, while managing the multiple testing burden. We used a linear mixed model implemented

in LIMIX, thereby controlling for both population structure and repeat lines from the same donor,

using kinship as a random effect component. The population structure random effect was accounted

for using the realized relationship covariance,that is dot product of the genotype matrices. PEER fac-

tors were included as fixed effect covariates.

To adjust for multiple testing across cis variants for each gene, we fit an empirical null distribution

using a permutation scheme combined with a parametric fit to the null distribution, similar to the

approach taken in Fast QTL (Walter et al., 2015), Briefly, for each gene, we obtained p-values from

100 permutations of the tested variants. We then estimated an empirical null distribution by fitting a

parametric Beta distribution to the obtained p-values. Using this null model, we estimated cis region

adjusted p-values for QTL lead variants. For multiple testing adjustment across genes, we performed

Benjamini-Hochberg adjustment.

For protein, peptide and transcript QTLs, as multiple of these features map to the same gene, we

used Bonferroni adjustment to correct for feature multiplicity for each gene, followed by Benjamini-

Hochberg adjustment, as performed for the gene-level eQTLs.
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Trans QTL mapping
For trans QTLs analysis, we considered lead cis QTLs (FDR < 10%; 654 pQTLs) versus 11,140 recur-

rently detected proteins. Genome-wide adjustment for multiple testing was performed using Benja-

mini Hochberg (BH) across all tests (7�106 variants � proteins).

To rule out any potential artefact linked to the mis-mapping of cis protein peptides to the trans

proteins, we aligned all trans peptide sequences to the cis protein sequences. We considered all

peptides used for the quantification of proteins associated in trans and locally aligned them to the

reference sequence of the proteins associated in cis (using pairwise2.align.localxs from the Biopy-

thon Project, with a gap penalty of 1). This identified a single trans association for which the pepti-

des had less than two mismatches, which was excluded from the reported results.

Downstream analysis of QTL results
Cis eQTL and pQTL replication
To assess the replication of QTL across molecular layers, we considered the QTL detected in one

layer and assessed the nominal significance in the other layer (PV <0.01), as well as the consistency

of the effect directions in the second layer.

To identify the determinants of eQTL to pQTL replication, we trained a Random Forest model to

the replication status of 3487 eQTL (Figure 2—source data 2). For each RNA-protein pair, we

defined eight features: ‘eQTL effect size’, ‘protein coefficient of error’, ‘protein coefficient of varia-

tion’, ‘protein abundance’, ”SNP MAF’, ‘RNA abundance’, ‘number of peptides’, and ‘number of

missing measurements’. The feature ‘protein coefficient of error’ was computed as the coefficient of

variation of the reference line across the set of technical replicates (TMT batches). This model was fit

in Python using the scikit-learn library v0.21.3, with the sklearn.ensembl.RandomForestClassifier

model with n_estimators = 100 (i.e. the suggested default). The model was trained and tested 50

times, training on a random sample of 80% of the data, and tested on the remaining 20%.

Annotation of cis-trans protein pairs with protein-protein interactions
Protein-protein interactions were obtained from the union of CORUM (Ruepp et al., 2010), IntAct

(Orchard et al., 2014) and protein-binding interactions from StringDB (Szklarczyk et al., 2017). For

CORUM, we considered pairwise interactions between all protein complex subunits, discarded any

isoform extension from the protein UniProt IDs, and intersect cis-trans protein pairs with the protein-

protein interactions reference list.

Overlap with disease variants and GTEx eQTLs
Following the approach in Kilpinen et al., 2017, we defined proxy variants of each cis QTL as var-

iants in high LD (r2 >0.8) based on the UK10K European reference panel (Buniello, 2019) and

located in the same cis window. A QTL was defined as GWAS-tagging if at least one proxy variant

was annotated in the NHGRI-EBI GWAS Catalog (download on 2019–03) (Staley et al., 2016). A

pQTL was defined as replicating in GTEx eQTLs if it was mapped at nominal significance (PV <0.01/

48) in any of the 48 tissues (Battle et al., 2017).

Complementary, we considered a more stringent criterion based on statistical co-localisation of

GWAS signals with QTLs. Specifically, we used summary statistics from phenotypic traits mapped in

51 studies (McLaren et al., 2016), using eCAVIAR (Hormozdiari et al., 2016) to test for co-localisa-

tion. For each pQTL cis region and each GWAS trait and study we first intersected the variants

assessed both in GWAS and in our study, resulting between 104 and 2 � 105 variants. We then

selected the traits with at least one variant with PVGWAS <10�5 and genome wide-significant in our

study. For each trait - QTL pair we performed the co-localisation of z-scores (computed as the ratio

between effect size and effect size standard deviation).

Annotation of pQTLs with variant effects
For each pQTL lead variant, a set of proxy variants were identified based on LD (r2 >0.8). Each proxy

variant located in the gene body for the corresponding gene was annotated based on its position

and predicted effect, using Variant Effect Predictor (Eilbeck et al., 2005). The variants were grouped

in parent categories using Sequence Ontology (2016 release; Wagih et al., 2018) as follows: ’infra-

me_variant’ includes variants annotated as ’inframe_deletion’, ’inframe_insertion’,
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’incomplete_terminal_codon_variant’, ’stop_lost’, ’stop_gained’ and ’missense_variant’; ’splicing_-

variant’ includes variants annotated as ’splice_acceptor_variant’, ’splice_donor_variant’ and ’splice_r-

egion_variant’; ’frameshift_variant’ includes variants annotated as ’feature_elongation’,

’feature_truncation’ and ’frameshift_variant’. The set of inframe variants were further classified as

deleterious or not according to their SIFT scores (Ng and Henikoff, 2003), as provided by MutFunc
69 (SIFT score <0.05 corresponds to a deleterious mutation). Each pQTL SNP with at least one proxy

variant was annotated with the predicted effects of all its proxy variants. For each class of variants

(inframe, splicing, etc.), enrichment in the set of pQTLs without any evidence of RNA mechanism (i.e.

no eQTL or transcript isoform QTL) compared to all pQTLs was evaluated by Fisher’s exact test,

restricted to pQTLs with at least one proxy variant in the gene body (Figure 3d).
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Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK,
Hamon C. 2003. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein
mixtures by MS/MS. Analytical Chemistry 75:1895–1904. DOI: https://doi.org/10.1021/ac0262560,
PMID: 12713048

Tyanova S, Temu T, Cox J. 2016. The MaxQuant computational platform for mass spectrometry-based shotgun
proteomics. Nature Protocols 11:2301–2319. DOI: https://doi.org/10.1038/nprot.2016.136, PMID: 27809316

van der Harst P, Verweij N. 2018. Identification of 64 novel genetic loci provides an expanded view on the
genetic architecture of coronary artery disease. Circulation Research 122:433–443. DOI: https://doi.org/10.
1161/CIRCRESAHA.117.312086, PMID: 29212778

Wagih O, Galardini M, Busby BP, Memon D, Typas A, Beltrao P. 2018. A resource of variant effect predictions of
single nucleotide variants in model organisms. Molecular Systems Biology 14:e8430. DOI: https://doi.org/10.
15252/msb.20188430, PMID: 30573687

Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, Perry JR, Xu C, Futema M, Lawson D, Iotchkova V,
Schiffels S, Hendricks AE, Danecek P, Li R, Floyd J, Wain LV, Barroso I, Humphries SE, Hurles ME, et al. 2015.
The UK10K project identifies rare variants in health and disease. Nature 526:82–90. DOI: https://doi.org/10.
1038/nature14962, PMID: 26367797

Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, Tang H, Snyder M. 2013. Variation and genetic control
of protein abundance in humans. Nature 499:79–82. DOI: https://doi.org/10.1038/nature12223,
PMID: 23676674

Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, Sun BB, Laser A, Maranville JC, Wu H, Ho JE,
Courchesne P, Lyass A, Larson MG, Gieger C, Graumann J, Johnson AD, Danesh J, Runz H, Hwang SJ, et al.
2018. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for
cardiovascular disease. Nature Communications 9:3268. DOI: https://doi.org/10.1038/s41467-018-05512-x,
PMID: 30111768

Yu H, Yan H, Li J, Li Z, Zhang X, Ma Y, Mei L, Liu C, Cai L, Wang Q, Zhang F, Iwata N, Ikeda M, Wang L, Lu T, Li
M, Xu H, Wu X, Liu B, Yang J, et al. 2017. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated
with schizophrenia in Han Chinese population. Molecular Psychiatry 22:954–960. DOI: https://doi.org/10.1038/
mp.2016.212, PMID: 27922604

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L,
Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, et al.
2018. Ensembl 2018. Nucleic Acids Research 46:D754–D761. DOI: https://doi.org/10.1093/nar/gkx1098,
PMID: 29155950

Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR,
Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJ, Carr SA, Tabb DL, et al. 2014.
Proteogenomic characterization of human Colon and rectal Cancer. Nature 513:382–387. DOI: https://doi.org/
10.1038/nature13438, PMID: 25043054

Mirauta et al. eLife 2020;9:e57390. DOI: https://doi.org/10.7554/eLife.57390 22 of 22

Research article Genetics and Genomics

https://doi.org/10.1038/s41588-017-0005-8
http://www.ncbi.nlm.nih.gov/pubmed/29229984
https://doi.org/10.1093/bioinformatics/btw373
http://www.ncbi.nlm.nih.gov/pubmed/27318201
https://doi.org/10.1371/journal.pgen.1004192
http://www.ncbi.nlm.nih.gov/pubmed/24699359
http://www.ncbi.nlm.nih.gov/pubmed/24699359
https://doi.org/10.1038/nprot.2011.457
http://www.ncbi.nlm.nih.gov/pubmed/22343431
https://doi.org/10.1038/s41586-018-0175-2
https://doi.org/10.1038/s41586-018-0175-2
http://www.ncbi.nlm.nih.gov/pubmed/29875488
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
https://doi.org/10.1192/bjp.bp.115.161950
https://doi.org/10.1192/bjp.bp.115.161950
http://www.ncbi.nlm.nih.gov/pubmed/26941264
https://doi.org/10.1021/ac0262560
http://www.ncbi.nlm.nih.gov/pubmed/12713048
https://doi.org/10.1038/nprot.2016.136
http://www.ncbi.nlm.nih.gov/pubmed/27809316
https://doi.org/10.1161/CIRCRESAHA.117.312086
https://doi.org/10.1161/CIRCRESAHA.117.312086
http://www.ncbi.nlm.nih.gov/pubmed/29212778
https://doi.org/10.15252/msb.20188430
https://doi.org/10.15252/msb.20188430
http://www.ncbi.nlm.nih.gov/pubmed/30573687
https://doi.org/10.1038/nature14962
https://doi.org/10.1038/nature14962
http://www.ncbi.nlm.nih.gov/pubmed/26367797
https://doi.org/10.1038/nature12223
http://www.ncbi.nlm.nih.gov/pubmed/23676674
https://doi.org/10.1038/s41467-018-05512-x
http://www.ncbi.nlm.nih.gov/pubmed/30111768
https://doi.org/10.1038/mp.2016.212
https://doi.org/10.1038/mp.2016.212
http://www.ncbi.nlm.nih.gov/pubmed/27922604
https://doi.org/10.1093/nar/gkx1098
http://www.ncbi.nlm.nih.gov/pubmed/29155950
https://doi.org/10.1038/nature13438
https://doi.org/10.1038/nature13438
http://www.ncbi.nlm.nih.gov/pubmed/25043054
https://doi.org/10.7554/eLife.57390

