542 research outputs found

    Structural Properties, Order-Disorder Phenomena and Phase Stability of Orotic Acid Crystal Forms

    Get PDF
    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1) and dimethylsulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135°C and loses only a small part of the water when stored over desiccants (25°C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen-bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a non-layer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration

    Psychophysical investigation of facial expressions using computer animated faces

    No full text
    The human face is capable of producing a large variety of facial expressions that supply important information for communication. As was shown in previous studies using unmanipulated video sequences, movements of single regions like mouth, eyes, and eyebrows as well as rigid head motion play a decisive role in the recognition of conversational facial expressions. Here, flexible but at the same time realistic computer animated faces were used to investigate the spatiotemporal coaction of facial movements systematically. For three psychophysical experiments, spatiotemporal properties were manipulated in a highly controlled manner. First, single regions (mouth, eyes, and eyebrows) of a computer animated face performing seven basic facial expressions were selected. These single regions, as well as combinations of these regions, were animated for each of the seven chosen facial expressions. Participants were then asked to recognize these animated expressions in the experiments. The findings show that the animated avatar in general is a useful tool for the investigation of facial expressions, although improvements have to be made to reach a higher recognition accuracy of certain expressions. Furthermore, the results shed light on the importance and interplay of individual facial regions for recognition. With this knowledge the perceptual quality of computer animations can be improved in order to reach a higher level of realism and effectiveness

    Anti-infective surface coatings: design and therapeutic promise against device-associated infections

    Get PDF
    Patient safety and well-being are under increasing threat from hospital-acquired infections [1]. The root cause of a large number of these infections arises from microbial biofilms that colonise on surfaces of medical devices such as the millions of catheters, endotracheal tubes, and prosthetics implanted every year [2]. Biofilm infections are accompanied by increased resistance to antimicrobial therapy and immune clearance, severely limiting treatment options and leading to life-threatening disease [3,4]. Device-associated infections are caused by both bacteria and fungi and, while most studies have focused on single-species biofilms, biofilm-related infections are often polymicrobial [5–8]. Multi-species biofilms, particularly those involving bacterial and fungal pathogens, are more challenging to treat, likely as a consequence of their combined architecture, protective extracellular matrix, and potential synergism in protecting against antimicrobials and host immunity [9–11]. Among the fungi, Candida species are the most important biofilm pathogens [12,13] and the fourth leading cause of blood-stream infections in United States hospitals [7]. Fungal diseases remain difficult to diagnose, mortality rates remain high, and antifungal drug resistance continues to limit therapeutic options [14,15]. We are in desperate need of innovative strategies that target the mechanisms of pathogenesis of polymicrobial biofilms on medical devices. This is a grand challenge because it requires multidisciplinary collaboration and breakthrough research involving physical chemistry, materials science, and microbiology. Communication between these disciplines has not been common, but recent advances show greater convergence in the development of anti-infective devices. At this nexus, we outline the therapeutic promise of anti-infective coatings for medical devices and discuss pitfalls and strategies for overcoming them.Bryan R. Coad, Hans J. Griesser, Anton Y. Peleg, Ana Trave

    RF switch positioner for communications satellite network

    Get PDF
    The RF switch positioner is a simple, lightweight, redundant positioning mechanism used to reconfigure the antenna beam on the INTELSAT VI satellite. It simultaneously rotates approximately 100 squareax waveguide switches through a full 360 deg. The RF switch positioner has been space qualified and has performed to expectations in conjunction with the feed networks in range testing

    Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties

    Get PDF
    Abstract not availableTushar Kumeria, Htwe Mon, Moom Sinn Aw, Karan Gulati, Abel Santos, Hans J. Griesser, Dusan Losi

    Solutions for 80 km DWDM systems

    Get PDF

    Performance Comparison of Single-Sideband Direct Detection Nyquist-Subcarrier Modulation and OFDM

    Get PDF
    Direct detection transceivers offer advantages, including low cost and complexity, in short- and medium-haul links. We carried out studies seeking to identify the signal formats which offer the highest information spectral densities and maximum transmission distances for direct detection links. The performance of two spectrally efficient optical signal formats, single-sideband (SSB) Nyquist pulse-shaped subcarrier modulation (SCM) and SSB orthogonal frequency-division multiplexing (OFDM), are compared by means of simulations. The comparison is performed for a range of wavelength-division multiplexing (WDM) net information spectral densities up to 2.0 b/s/Hz by varying the signal bandwidth, modulation cardinality, and WDM channel spacing. The signal formats' tolerance to signal-signal beating interference, resulting from square-law detection, is investigated, and the Nyquist-SCM format is found to suffer lower penalties from this nonlinearity at high information spectral densities. In 7 × 28 Gb/s WDM transmission at 2.0 b/s/Hz (with electronic predistortion and EDFA-only amplification), Nyquist-SCM signals can be transmitted over distances of up to 720 km of standard SMF in comparison to a maximum of 320 km with the OFDM signal format
    • …
    corecore