334 research outputs found

    ESD full chip simulation: HBM and CDM requirements and simulation approach

    Get PDF
    Verification of ESD safety on full chip level is a major challenge for IC design. Especially phenomena with their origin in the overall product setup are posing a hurdle on the way to ESD safe products. For stress according to the Charged Device Model (CDM), a stumbling stone for a simulation based analysis is the complex current distribution among a huge number of internal nodes leading to hardly predictable voltage drops inside the circuits. <br><br> This paper describes an methodology for Human Body Model (HBM) simulations with an improved ESD-failure coverage and a novel methodology to replace capacitive nodes within a resistive network by current sources for CDM simulation. This enables a highly efficient DC simulation clearly marking CDM relevant design weaknesses allowing for application of this software both during product development and for product verification

    Blue and green food webs respond differently to elevation and land use.

    Get PDF
    While aquatic (blue) and terrestrial (green) food webs are parts of the same landscape, it remains unclear whether they respond similarly to shared environmental gradients. We use empirical community data from hundreds of sites across Switzerland and a synthesis of interaction information in the form of a metaweb to show that inferred blue and green food webs have different structural and ecological properties along elevation and among various land-use types. Specifically, in green food webs, their modular structure increases with elevation and the overlap of consumers' diet niche decreases, while the opposite pattern is observed in blue food webs. Such differences between blue and green food webs are particularly pronounced in farmland-dominated habitats, indicating that anthropogenic habitat modification modulates the climatic effects on food webs but differently in blue versus green systems. These findings indicate general structural differences between blue and green food webs and suggest their potential divergent future alterations through land-use or climatic changes

    Blue and green food webs respond differently to elevation and land use

    Full text link
    While aquatic (blue) and terrestrial (green) food webs are parts of the same landscape, it remains unclear whether they respond similarly to shared environmental gradients. We use empirical community data from hundreds of sites across Switzerland and a synthesis of interaction information in the form of a metaweb to show that inferred blue and green food webs have different structural and ecological properties along elevation and among various land-use types. Specifically, in green food webs, their modular structure increases with elevation and the overlap of consumers’ diet niche decreases, while the opposite pattern is observed in blue food webs. Such differences between blue and green food webs are particularly pronounced in farmland-dominated habitats, indicating that anthropogenic habitat modification modulates the climatic effects on food webs but differently in blue versus green systems. These findings indicate general structural differences between blue and green food webs and suggest their potential divergent future alterations through land-use or climatic changes

    Energy-Optimised Building- Experience and Future Perspectives from a Demonstration Programme in Germany

    Get PDF
    In 1995, the German Federal Ministry of Economics and Technology launched an intensive research and demonstration programme on energy-optimised construction of new buildings as well as retrofitting the building stock. Beside research on materials and components, approximately 50 demonstration buildings covering various building typologies have been realized and monitored within the programme (www.enob.info). Accompanying research was conducted to systemise the results and lessons learned. The programme led to a set of prominent research results in the fields of e.g. daylighting, passive cooling, energy efficiency and renewable energy use in commercial buildings, user behaviour and user satisfaction. Many of the demonstration projects have reached energy savings of 50% and more compared to current practice in Germany, without exceeding conventional investment costs. A number of these projects have been awarded architectural prizes. This paper summarises key findings and explains the strategies for new projects on the route toward net zero-energy buildings. These strategies are based on a further decrease in energy demand and increased renewable energy utilization in conjunction with intensified use of building-integrated power generation interacting with the public grid

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base

    Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany

    Get PDF
    Due to the recent emergence of invasive mosquito species and the outbreaks of mosquito-borne diseases in Europe, research on the ecology and diversity of the mosquito fauna has returned to scientific agendas. Through a nationwide surveillance programme in Germany, mosquitoes have been monitored actively by systematically operated traps since 2011, and passively by the 'Mückenatlas' (mosquito atlas) citizen science project launched in 2012. To assess the performance of both monitoring methods we compared the two respective datasets with regard to habitat coverage, species composition and the ability to detect invasive mosquitoes. The datasets include observations from the beginning of the project until the end of 2017. We found significant differences in species composition caused by land use types and the participants' recording activity. Active monitoring performed better in mapping mosquito diversity, whereas passive monitoring better detected invasive species, thereby using data from private premises scientists usually cannot access. Synthesis and applications. Active and passive monitoring is complementary. Combining them allows for the determination of mosquito diversity, efficient detection of emerging invasive species and the initiation of rapid-response actions against such invaders. The 'Mückenatlas' sets an example for the usefulness of citizen science when included in a national monitoring programme, an approach that may be worth copying for tackling the global spread of arthropod vectors of disease agents

    Linking human impacts to community processes in terrestrial and freshwater ecosystems.

    Get PDF
    Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems

    Bacterial adaptation is constrained in complex communities

    Get PDF
    © 2020, The Author(s). A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions. Here we show that community context can dramatically alter evolutionary dynamics using a novel approach that ‘cages’ individual focal strains within complex communities. We find that evolution of focal bacterial strains depends on properties both of the focal strain and of the surrounding community. In particular, there is a stronger evolutionary response in low-diversity communities, and when the focal species have a larger genome and are initially poorly adapted. We see how community context affects resource usage and detect genetic changes involved in carbon metabolism and inter-specific interaction. The findings demonstrate that adaptation to new environmental conditions should be investigated in the context of interspecific interactions
    • …
    corecore