235 research outputs found
Factors controlling the last interglacial climate as simulated by LOVECLIM1.3
The last interglacial (LIG), also identified to the Eemian in Europe, began at approximately 130 kyr BP and ended at about 115 kyr BP (before present). More and more proxy-based reconstructions of the LIG climate are becoming more available even though they remain sparse. The major climate forcings during the LIG are rather well known and therefore models can be tested against paleoclimatic data sets and then used to better understand the climate of the LIG. However, models are displaying a large range of responses, being sometimes contradictory between them or with the reconstructed data. Here we would like to investigate causes of these differences. We focus on a single climate model, LOVECLIM, and we perform transient simulations over the LIG, starting at 135 kyr BP and run until 115 kyr BP. With these simulations, we test the role of the surface boundary conditions (the time-evolution of the Northern Hemisphere (NH) ice sheets) on the simulated LIG climate and the importance of the parameter sets (internal to the model, such as the albedos of the ocean and sea ice), which affect the sensitivity of the model.
The magnitude of the simulated climate variations through the LIG remains too low compared to reconstructions for climate variables such as surface air temperature. Moreover, in the North Atlantic, the large increase in summer sea surface temperature towards the peak of the interglacial occurs too early (at ∼128 kyr BP) compared to the reconstructions. This feature as well as the climate simulated during the optimum of the LIG, between 131 and 121 kyr BP, does not depend on changes in surface boundary conditions and parameter sets.
The additional freshwater flux (FWF) from the melting NH ice sheets is responsible for a temporary abrupt weakening of the North Atlantic meridional overturning circulation, which causes a strong global cooling in annual mean. However, the changes in the configuration (extent and albedo) of the NH ice sheets during the LIG only slightly impact the simulated climate. Together, configuration of and FWF from the NH ice sheets greatly increase the magnitude of the temperature variations over continents as well as over the ocean at the beginning of the simulation and reduce the difference between the simulated climate and the reconstructions. Lastly, we show that the contribution from the parameter sets to the climate response is actually very modest
Recommended from our members
Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6
Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheet–climate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change
Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project
In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene
Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM)
Projections of the contribution of the Greenland ice sheet to future sea-level rise include uncertainties primarily due to the imposed climate forcing and the initial state of the ice sheet model. Several state-of-the-art ice flow models are currently being employed on various grid resolutions to estimate future mass changes in the framework of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). Here we investigate the sensitivity to grid resolution of centennial sea-level contributions from the Greenland ice sheet and study the mechanism at play. We employ the finite-element higher-order Ice-sheet and Sea-level System Model (ISSM) and conduct experiments with four different horizontal resolutions, namely 4, 2, 1 and 0.75 km. We run the simulation based on the ISMIP6 core climate forcing from the MIROC5 global circulation model (GCM) under the high-emission Representative Concentration Pathway (RCP) 8.5 scenario and consider both atmospheric and oceanic forcing in full and separate scenarios. Under the full scenarios, finer simulations unveil up to approximately 5 % more sea-level rise compared to the coarser resolution. The sensitivity depends on the magnitude of outlet glacier retreat, which is implemented as a series of retreat masks following the ISMIP6 protocol. Without imposed retreat under atmosphere-only forcing, the resolution dependency exhibits an opposite behaviour with approximately 5 % more sea-level contribution in the coarser resolution. The sea-level contribution indicates a converging behaviour below a 1 km horizontal resolution. A driving mechanism for differences is the ability to resolve the bedrock topography, which highly controls ice discharge to the ocean. Additionally, thinning and acceleration emerge to propagate further inland in high resolution for many glaciers. A major response mechanism is sliding, with an enhanced feedback on the effective normal pressure at higher resolution leading to a larger increase in sliding speeds under scenarios with outlet glacier retreat
PLISMIP-ANT, an ice-sheet model intercomparison project
In the context of future climate change, understanding the nature and
behaviour of ice sheets during warm intervals in Earth history is of
fundamental importance. The late Pliocene warm period (also known as the PRISM
interval: 3.264 to 3.025 million years before present) can serve as a
potential analogue for projected future climates. Although Pliocene ice
locations and extents are still poorly constrained, a significant contribution
to sea-level rise should be expected from both the Greenland ice sheet and the
West and East Antarctic ice sheets based on palaeo sea-level reconstructions.
Here, we present results from simulations of the Antarctic ice sheet by means
of an international Pliocene Ice Sheet Modeling Intercomparison Project
(PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice
and shelf approximations have been used to simulate the complete Antarctic
domain (including grounded and floating ice). We compare the performance of
six existing numerical ice-sheet models in simulating modern control and
Pliocene ice sheets by a suite of five sensitivity experiments. We include an
overview of the different ice-sheet models used and how specific model
configurations influence the resulting Pliocene Antarctic ice sheet. The six
ice-sheet models simulate a comparable present-day ice sheet, considering the
models are set up with their own parameter settings. For the Pliocene, the
results demonstrate the difficulty of all six models used here to simulate a
significant retreat or re-advance of the East Antarctic ice grounding line,
which is thought to have happened during the Pliocene for the Wilkes and
Aurora basins. The specific sea-level contribution of the Antarctic ice sheet
at this point cannot be conclusively determined, whereas improved grounding
line physics could be essential for a correct representation of the migration
of the grounding-line of the Antarctic ice sheet during the Pliocene
Identification of the major active ingredients in illegal pesticide seized by Brazilian Federal Police and quantification of metsulfuron-methyl and tebuconazole
A compilação de relatórios forenses de agrotóxicos, objetos de apreensões pela Polícia Federal no Brasil, mostrou que metsulfurom-metílico, imidacloprido, fipronil, tebuconazol, clorimurom-etílico e glifosato são os principais ingredientes ativos (IA) importados ilegalmente. Apesar destes IA não estarem entre os agrotóxicos mais comercializados no país, o alto preço das formulações correspondentes legalmente registradas pode estimular esta atividade ilegal. Com base neste estudo, amostras de agrotóxicos contrabandeados apreendidos contendo tebuconazol e metsulfurom-metílico foram analisadas quantitativamente utilizando cromatografia a gás e líquida, respectivamente. Tebuconazol, em apresentações líquidas e sólidas, apresentou concentrações concordantes com as informações dos rótulos, enquanto que a maioria das amostras de metsulfurom-metílico, rotuladas como 600 g kg-1, apresentaram concentrações mais baixas nas análises químicas (média de 337,0 g kg-1 + 2,0).The compilation of forensic reports from pesticides seized by the Federal Police in Brazil showed that metsulfuron-methyl, imidacloprid, fipronil, tebuconazole, clorimuron-ether and glyphosate were the dominant active ingredients (AI) illegally imported. Despite these AI were not among the most traded pesticides in Brazil, high prices of corresponding legal formulations may stimulate this illegal activity. Based on this study, smuggled pesticides containing tebuconazole and metsulfuron-methyl were seized and quantitatively analyzed using gas and liquid chromatography, respectively. Tebuconazole results, in liquid and solid presentations, were in accordance with the information on the label, while most metsulfuron-methyl samples, labeled as 600 g kg-1, showed lower concentrations in chemical analysis (mean of 337.0 g kg-1 + 2.0)
Global stability of enzymatic chain of full reversible Michaelis-Menten reactions
International audienceWe consider a chain of metabolic reactions catalyzed by enzymes, of reversible Michaelis-Menten type with full dynamics, i.e. not reduced with any quasi- steady state approximations. We study the corresponding dynamical system and show its global stability if the equilibrium exists. If the system is open, the equilibrium may not exist. The main tool is monotone systems theory. Finally we study the implications of these results for the study of coupled genetic-metabolic systems
- …
