2,679 research outputs found

    Coherent analysis of quantum optical sideband modes

    Full text link
    We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments.Comment: 3 pages, 3 figures, submitted to Optics Letter

    Multiplexed communication over a high-speed quantum channel

    Get PDF
    In quantum information systems it is of particular interest to consider the best way in which to use the non-classical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are amongst the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analogue bandwidth. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4 GHz comb of vacuum squeezing produced by a sub-threshold OPO, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel

    Demonstration of the spatial separation of the entangled quantum side-bands of an optical field

    Get PDF
    Quantum optics experiments on "bright" beams typically probe correlations between side-band modes. However the extra degree of freedom represented by this dual mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum side-bands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the side-bands of a squeezed beam

    Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    Get PDF
    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve. © 2016 American Physical Society

    The emergence of convergence

    Get PDF
    Science is increasingly a collaborative pursuit. Although the modern scientific enterprise owes much to individuals working at the core of their field, humanity is increasingly confronted by highly complex problems that require the integration of a variety of disciplinary and methodological expertise. In 2016, the U.S. National Science Foundation launched an initiative prioritizing support for convergence research as a means of “solving vexing research problems, in particular, complex problems focusing on societal needs.” We discuss our understanding of the objectives of convergence research and describe in detail the conditions and processes likely to generate successful convergence research. We use our recent experience as participants in a convergence workshop series focused on resilience in the Arctic to highlight key points. The emergence of resilience science over the past 50 years is presented as a successful contemporary example of the emergence of convergence. We close by describing some of the challenges to the development of convergence research, such as timescales and discounting the future, appropriate metrics of success, allocation issues, and funding agency requirements

    Photostatistics Reconstruction via Loop Detector Signatures

    Full text link
    Photon-number resolving detectors are a fundamental building-block of optical quantum information processing protocols. A loop detector, combined with appropriate statistical processing, can be used to convert a binary on/off photon counter into a photon-number-resolving detector. Here we describe the idea of a signature of photon-counts, which may be used to more robustly reconstruct the photon number distribution of a quantum state. The methodology is applied experimentally in a 9-port loop detector operating at a telecommunications wavelength and compared directly to the approach whereby only the number of photon-counts is used to reconstruct the input distribution. The signature approach is shown to be more robust against calibration errors, exhibit reduced statistical uncertainty, and reduced reliance on a-priori assumptions about the input state.Comment: 13 pages, 12 figure

    Unconditional Continuous Variable Dense Coding

    Get PDF
    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology
    • …
    corecore