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We investigate the conditions under which unconditional dense coding can be achieved using continuous-
variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss
experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as
previously thought, and are within the reach of present technology.
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[. INTRODUCTION are not as stringent as previously thought, even taking into
account lack of state purity and nonunit detection efficiency.

The classical channel capacity of a quantum channel can

bg enhanced if the se_nder and recipient of the informatiop, Il. IDEAL CHANNEL CAPACITIES
Alice and Bob, repectively, share an entangled state. This _ o N
effect is known as quantum dense codiiid, and can be e begin by rederiving the channel capacities of Gauss-

thought of as the converse problem to quantum teleportatiol®" quantum channels and continuous variable dense coding
[2] where, effectively, the quantum capacity of a classicalising quadrature spectral variances. Such variances are di-
channel is enhanced by the use of entanglement. rectly measureable in an experiment. The Shannon capacity
Dense coding was originally introduced for discrete vari-L7] of a communication channel with Gaussian noise of
ables and an experimental demonstration of the effect ha@ower (variance N and Gaussian distributed signal povier
been made using photonic polarization entanglenj@it  operating at the bandwidth limit is
One drawback of this demonstration was, due to the low
efficiency of entanglement production and detection, the
demonstration was conditional on Bob detecting a pair of
photons, a rare event. In contrast a dense coding scheme

based on continuous variables, such as the quadrature amptigation(1) can be used to calculate the channel capacities
tudes of a light field, which has recently been proposedyt quantum states with Gaussian probability distributions
would in prlnC|_pIe demonstrate an.uncondlltlonal Improve-g;,ch as coherent states and squeezed §i@@s Consider
ment in classical channel capacify]. Ultimately this it 5 signal composed of a Gaussian distribution of
scheme can beat, under certain conditions, the maximugnerent-state amplitudes all with the same quadrature angle
channel capacity given by Fock-state encoding. However, tthee Fig. 1(@)]. The signal powe¥, is given by the variance
conditions for this strong violation found in Rg#] required ¢ the distribution. The noise is given by the intrinsic quan-
unrealistic levels of squeezing. tum noise of the coherent states and is defined tovje
A number of groups have taken steps towards the experi= 1 pecause the quadrature angle of the signal is known,
mental implementation of this scherf®6]. In these experi-  ,m64yne detection can, in principle, detect the the signal
ments increased signal to noise was demonstrated with thgino ¢ further penalty. Thus the measured signal-to-noise
addition of entanglement and conclusions were drawn about i is S/N=V_/V.= V..
the violation of coherent-state classical capacity, based on" | qeneral the :;rl]ver;ge photon number per bandwidth per
the results of Refl4]. However, unit entanglement state pu- ¢ocond of a light beam is given by
rity and detection efficiency were assumed in R4f, which
is unlikely to have been the case experimentally. Also no
attempt was made to experimentally quantify the number of h=
guanta used in the communication channel. There is thus a
need for a more detailed analysis.
In this paper we make such an investigation. We come tovhere V' (V™) are the variances of the maximugmini-
the rather surprizing conclusion that in fact the conditionsmum) quadrature projections of the noise ellipse of the state.
required for a strong demonstration of the effect, i.e., beating hese projections are orthogonal quadratures, such as ampli-
the ultimate channel capacity given by Fock-state encodingude and phase, and obey the uncertainty principte/~
=1. In the above example one quadrature is made up of
signal plus quantum noise such that =V +1 whilst the
*Email address: ralph@physics.ug.edu.au orthogonal quadrature is just quantum noise \$0=1.
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(1(a) ) quadratures. Thus the channel capacity for a coherent state
Bob with dual quadrature encoding and heterodyne detection is
Source (AM) >» [D

HA 1 S| 1 S —

@ Cch=§|092 1+ +§Iogz 1+ =logy[1+n],
\. J (4)
) which exceeds that of the homodyne technifigg. (3)] for

n>2.

The above channel capacities are the best achievable if we
restrict ourselves to a semiclassical treatment of light. How-
ever, the channel capacity of the homodyne techn|dig.

4 1(a)] can be improved by the use of nonclassical, squeezed
light. With squeezed light the noise variance of the encoded

(1(c) guadrature can be reduced such ¥gi<1, while the noise
of the unencoded quadrature is increased such ‘hat
=1N,.. As a result the signal-to-noise ratio is improved to
y SIN=V,/V,. while the photon number is now given by Eq.
(2) but withV* =V¢+V, . andV~=1N,. where a purédi.e.,
- minimum uncertainty squeezed state has been assumed.
@ ] Maximizing the signal-to-noise ratio for fixed leads to
/ SIN=4(n+n?) ior a squeezed quadrature vgriance of
\ ) Vieopt=1/(1+2n). Hence the channel capacity for a

squeezed beam with homodyne detection is

FIG. 1. Schematic diagrams @& coherent homodynéeb) co- o
herent heterodynég) dense coding schemes for a communication Csp=log,[1+2n], (5)
channel. The abbreviations are AM, amplitude modulation; PM,
phase modulation; HA, coherent homodyne detection of the ampliwhich exceeds both coherent homodyne and heterodyne for
tude quadrature; HP, coherent homodyne detection of the pha | values ofn.

quadrature. The beam splitters are taken to be 50% transmitting an A final improvement in channel capacity can be obtained

the two squeezed sources are squeezed in orthogonal quadraturegy allowing non-Gaussian states. The absolute maximum

— ) channel capacity for a single mode is given by the Holevo
Hencen=1/4V, and so the channel capacity of a coherentyoynd and can be realized by encoding in a maximum en-
state with single quadrature encoding and homodyne detegr,py ensemble of Fock states and using photon number de-
tion is tection[8,9,11]. This ultimate channel capacity is

Cc=log;[ V1+4n]. (3 Cros=(1+Mlog,[(1+m)]-nlog(n],  (6)

Establishing in an experiment that a particular optical mod
has this capacity would involvé) measuring the quadrature

) ; " oo SO
j_‘\j‘.‘p'lt“d? valrlan(_;es of the t)_gam, and_\/ ,én)bf:ahbranln? numbers the single-channel capacities are always best. How-
ice’s signal variance, angiii) measuring Bob's signal-to- ever, we will find that for sufficiently high-average photon

noise ratio. If these measurments agreed with the theoreticﬂ'umbers dense coding can give superior capacities. The
conditions above then Shannons theorem tells us that an eQétup is depicted in Fig.(®). Entanglement is generated in
coding scheme exists which could realize the channel capatn . standard way by mi%iné two squeezed states, with their
ity of Eqg. (3). An example of such an encoding is given in squeezing ellipses orthogonal, on a 50:50 beam s’p['[t@r
Ref. [10]. - ) One half of the entangled pair is sent to Alice who encodes
For photon numbers>2 improved channel capacity can on hoth quadratures in the manner of coherent heterodyne.
be obtained by encoding symmetrically on both quadratureghe sends the beam on to Bob who has also received the
and detecting both quadratures simultaneously using hetergther half of the entangled pair. He uses a dual homodyne
dyne detection or dual homodyne detect/see Fig. 1b)].  technique to measure both quadratures of the beam from Al-
Because of the noncommutation of orthogonal quaraturege but injects his entangled beam into the empty port of the
there is a penalty for their simultaneous detection which regyal homodyne beam splitter. The resulting signal-to-noise
duces the signal-to-noise ratip of each quadraturé&/te ratio for the two quadrature channels $§N=3(Vs/V,e),
=1/2Vs. Also because there is signal on both quadraturegyhere nowv,,, is the variance of the squeezed quadrature of
the average photon number of the beam is mowl/2V,. the beams used to create the entanglement. The photon num-
On the other hand the total channel capacity will now be theber is just that of the beam carrying the sig(idle cost of
sum of the two independent channels carried by the twadlistributing the entanglement is not taken into accpamid

Svhich is the maximal channel capacity at all valueshof
We now turn to dense coding. At low-average photon
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so is given by Eq.(2) with V'=3V +3V,. and V~ 61
=1N,e. Once again pure squeezed states are assumed.
Maximizing the signal-to-noise ratio for fixenl gives SIN
=n+n? for a squeezed quadrature variance Ve opt

=1/(1+2H). So the optimum channel capacity for dense
coding is

CdC (bzo’nzl)
' e
Cde (b=2m=1)

7 Cc (b=01m=0.9)

n=5

Channel Capacity {bit/s}

CSPt=log,[ 1+ n+n?], 7)

— 0 01 02 03 04 05 06 07 08 09 1
which exceeds the coherent-state homodynenfse0.478, Vie

which can be achieved wit/,.~0.5 (about 50% squeez-

ing), and always exceeds the coherent-state heterodyne chan-FIG. 2. Plots of the dense coding channel capa€lty as a
nel capacity. Dense coding beats the squeezed state chanfi#iction of input squeezing/y, for an average photon number of

capacity withn>1 (achieved withV,,.~0.33 or about 67% n=5. Regions in which the dgnsg coding chanpgl capacity excged
squeezing and beats Fock-state encoding when1.88 the Fock-state channel capacity display unconditional dense coding

. . . with respect to the Fock-state scheme. Regions in wiigh
(achieved withV,e~0.2 0'_' squeezing of ab_OUt 80% . >C, display unconditional dense coding with respect to the
Some comments are in order concerning the analysis thueezed state scheme.

date. First, notice the boundaries of the previous analysis

were for pure squeezed states which saturate the uncertaindyq it would seem that an experimental demonstration of
inequality. In contrast the states produced in_experiments algnconditional dense coding is beyond current technology.
rarely pure, sometimes because of technical N8,  However, in the following section we will show that this is

sometimes due to the type of squeezing mechafisthand ot the case, and that a demonstration is within the reach of

sometimes simply due to loss in the nonlinear crybt&l. . rent continuous-variable technology.
Loss in the optical elements used to produce the entangle-

ment from the squeezing will also reduce the pu(ig well
as the effective entanglementherefore, in an experiment
we will have thatV,,,= 1NV, .+ b, whereb represents excess
noise. This means that a particular level of entanglement is Notice that the preceeding analysis and that of R&F.
accompanied by more photons than in the pure case. Henegked the question: “what is the minimuphoton number
channel capacities will be lowerkdFurther, unit detection for which we can demonstrate dense coding?” We will now
efficiency was assumed. Again, this is unlikely in an experi-show that a different answer is obtained if we ask the ques-
ment. As a result Bob’s detected variances will be given bytjon: “what is the minimumsqueezingequired to demon-

Vger= 7V +1— 17, wherey is the detection efficiency. Non- strate dense coding?” Rather than maximizing the signal-to-
unit detection efficiency will lower signal-to-noise ratio and 5ise ratio for a fixedn we now allow an arbitrary

once again decrease the effective channel capacity. Propagayationship between the squeezed quadrature variance, aver-
tion loss(assumed equal in the two channeiiss the same age photon number and excess noise. The detected dense
efflect a]:s detection efficiency and so can be rolled into the,ging signal-to-noise ratio may then be explicitly written as
value or 7. [7(4N—Vpe— N o= b+ 2)])/(47V et 4—47). Hence a

To achieveunconditional dense coding/e require that . . L
even in the presence of these kinds of imperfections, th&'0re general expression for the dense coding capacity is

dense coding channel capacity exceeds that of the ideal —

single-channel capacities. The levels of squeezing apparently Cyo=log,| 1+ 7(4Nn—Vpe— 1IN pe—b+2) ®

required in the ideal case are already at the boundary of what de 2 A4(pVpet1l—17)

is currently achievable experimentally—experiments regu-

larly achieve squeezing greater than 3 (%) [16], but Figure 2 shows the channel capacity of the dense coding

stable measured squeezing of approximately 369 has schemeC,. as a function of the squeezed quadrature vari-

only been reported recentlyl7]. Imperfections appear to ance at an average photon numbenef5. For the moment,

only further increase the stringent experimental requirementgcus on the topmost curvéabeled “C4. (b=0,7=1)")
which represents the channel capacity in the absence of ex-
cess noise and for perfect detection efficiency. This curve

'For example, the optimum signal-to-noise ratio of the dense codrepresents the best possible scenario for that photon number.

ing scheme when considering entanglement impuritys/isl=n Also shown in this figure are the ideal maximum channel

+n?-Db(0.25+0.5n)+0.062%H2 At the optimum squeezed capacities for the squeezed state scheBg,and the Fock

quadrature variance &, opi= 2/(4n+2-D) (with b<4n+2) the  State schem€gy for this photon_number. As illustrated in

new, more general expression for the optimum dense coding capafig. 2 and indicated by Ed7), atn=5 the optimum dense

ity is C3P!=log,[1+n+n?—b(0.25+ 0.5n) +0.062%H?] which will  coding capacity exceeds the capacity of the squeezed or

be less tharC3P" for any amount of excess noise. Fock-state schemes. However, Fig. 2 illustrates a point that is

III. DEMONSTRATING UNCONDITIONAL DENSE
CODING
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not clear from Eq.(7)—the dense coding channel capacity representing the dense coding channel capa€y, when
exceeds that o€}, or Cr ¢ for a number of values of ¢, excess noise, labeled BE2,7=1)" and imperfect detec-
not just the optimum. tion efficiency, labeled “b6=0,7=0.9),” are considered.
Most significantly, Fig. 2 shows that it is possible to dem-First note that Fig. 2 shows that both excess noise and im-
onstrate unconditional dense coding with a relatively modesperfect detection efficiency decrease the effective channel
amount of squeezing. For example, it is seen from Fig. 2 thagapacity of the dense coding scheme. Indeed, sufficient
unconditional dense coding may be demonstrated with reamounts of either of these imperfections will render a dem-
spect to the squeezed state systenMi~0.48, and it may  onstration of unconditional dense coding impossible for low
be demonstrated with respect to the Fock-state scheme f@lhoton numbers. However, given a minimum level of
Vne~0.33. These levels of squeezing are far more experisqueezing, this may be solved by increasing the photon num-
mentally feasible than those found by simply considering theyer, i.e., by increasing the signal strength. The minimum
optimum. Even more heartening from an experimental pertevel of squeezing required for each photon number depends
spective is that the levels of squeezing required may be reyuite strongly on the entanglement impurity and detection
duced by increasing. Experimentally, given a minimum efficiency. This effect is shown in Fig. 3, whe¥g,,xr and
amount of squeezing, this amounts to simply increasing th& ., are plotted as a function of the photon number for a
signal strength. number of values of excess noise in p@tand a number of
Denoting the maximum squeezed quadrature variances a&hlues of detection efficiency in paf).
which unconditional dense coding may be demonstrated with Figure 3 shows that, for a given photon number, either of
respect taCgsp andCrock @SVmaxs andVyaxr , respectively, these imperfections will mean that more squeezing is re-
Fig. 3 showsV a4 s @andV,axr as a function of the photon quired than for the best possible scenario. Alternatively, for a
number. Again, focusing for the moment on the curves forgiven level of squeezing, entanglement impurity or imperfect
pure entanglement and perfect detection efficidielyeled ©  detection efficiency will require that more photons must be
(b=0,7=1)],"itis seen thal,xs andV ¢ asymptote used to demonstrate unconditional dense coding.
to values of; and 1&, respectively. This is quite a surprizing ~ Perhaps more importantly, Fig. 3 shows that the experi-
result. This figure shows that, in a perfect experiment, it isnental issue of greatest concern is that of imperfect detection
possible to demonstrate unconditional dense coding witlefficiency. Excess noise will certainly have an effect on the
50% squeezing with respect to the the squeezed state chanmelrformance of the dense coding scheme for small photon
capacity and 63% squeezing with respect to the Fock-stateumbers. However, the asymptotes\gf,xr and Vo, s do
scheme. not depend on the entanglement purity. By contrast, the as-
Turning now to experimental issues such as excess noisgnptotes ofV, ¢ andV s depend very strongly on the
or imperfect detection efficiency, Fig. 2 also shows curvedetection efficiency. In practical terms, this means that much
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greater levels of squeezing will be required to demonstratscheme. Thus the levels of squeezing required for a strong
unconditional dense coding when the detection efficiency islemonstration of unconditional dense coding are within the
poor. Indeed the amount of squeezing required increases ekRoundaries of current technology.

ponentially around a characteristic value of detection effi-

ciency. This suggests that practical systems must exceed a IV. CONCLUSION

minimum detection efficiency in order to demonstrate uncon- o . .
ditional dense coding. When comparing the dense codin We have shown that by qurklng in the Iarg_e signal regime
channel capacity to the squeezed state system, the minimu%_,gemqnstratlon of unconditional denge coding appears pos-
detection efficiency required iBm;, s= 5. The minimum de- sible W.'th present technology. We believe that such a dem'
tection efficiency increases t@min,EZG/(1+e) in order to onstration would represent a bench-mark experiment in

L : ’ continuous-variable quantum information technology. It is
demonstrate unconditional dense coding with respect to the . ) .

Ihteresting to note relationships between the entanglement
Fock-state system.

requirements of dense coding and teleportation. Beating the

Taking these effects into account, it appears that an ©X oherent-state channel capacity with dense coding can be

perimental demonstration of unconditional dense COdingachieved with any level of squeezing in the entanglement.

W'th respect to the sqpeezed state system Is purrently.fE%—im”aﬂy an improvement over the classical fidelity limit for
sible. For example, with experimentally realistic detection eleportation of coherent states is achieved with any finite
efficiencies of 85—95% the maximum squeezing requireci . . .
. o . evel of squeezing. However, the preservation of nonclassical
would be approximately 68-55 %, respectively. These IeVel%roperties of the state like squeezing requires greater than
of squeezing are now quite commonly achiey&6,17. On I : X :
. - 50% squeezing in teleportation, corresponding to the require-
the other hand, an experimental demonstration of uncondi: 0 .
. : X . ment of 50% squeezing to beat the squeezed state channel
tional dense coding with respect to the Fock scheme is %apacity in dense coding. It is interesting to muse as to
rather more ambitious, but not unattainable, goal. With ex- : . »
! ' whether the ¥ entanglement requirement for unconditional

perimentally realistic detection efficiencies of 85—95 % thedense coding corresponds to the passing of some other tan-
maximum squeezing required would be approximately 9 P P 9

81-68 %, respectively. Ref17] reported measured squeez- gible limit in teleportation.
ing of 5 dB with a detection efficiency of approximately
87%. Assuming a dense coding scheme with approximately
the same detection efficiency as quoted in IRET], we con- We thank C.Savage and W.Bowen for useful comments.
clude that this would have been just sufficient to demonstrat&@his work was supported by the Australian Research
unconditional dense coding with respect to the Fock-stat€ouncil.
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