5 research outputs found

    Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications

    Get PDF
    The design and initial demonstration of a laser pump module (LPM) incorporating single-mode, grating-stabilized 808-nm diode lasers and a low-loss, high-port-count optical combiner are completed. The purpose of the developed LPM is to reliably pump an Nd:YAG crystal in the laser head (LH), which serves as the optical metrology source for SIMLite mission. Using the narrow-linewidth, single-mode laser diodes enables placement of the pump power near Nd adsorption peak, which enhances pumping efficiency. Grating stabilization allows for stable pump spectra as diode operating temperature and bias current change. The low-loss, high-port-count optical combiner enables efficient combining of tens of pumps. Overall, the module supports 5+ years of continuous operation at 2 W of pump power with reliability approaching 100 percent. The LPM consists of a laser diode farm (LDF) and a pump beam combiner (PBC). An array of 807- to 808-nm fiber-pigtailed laser diodes makes up the LDF. A Bragg grating in each 5- m core single-mode (SM) fiber pigtail acts to stabilize the lasing spectra over a range of diode operating conditions. These commercially available single-mode laser diodes can deliver up to 150 mW of optical power. The outputs from the multiple pumps in the LDF are routed to the PBC, which is a 37-input by 1-output all-fiber device. The input ports consist of 5- m core SM fiber, while the output port consists of 105- m core, 0.15 NA (numerical aperture) multi-mode (MM) fiber. The combiner is fabricated by fusing the 37 input fibers while simultaneously tapering the fused region. At the completion of this process, the MM fiber is spliced to the end of the adiabatic taper, and, for protection, the combiner is sheathed by a capillary tube. A compact and robust metal housing was designed and fabricated to protect the PBC during space deployment

    High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

    Get PDF
    (abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member list of the NEAT proposal and the news about the project are available at http://neat.obs.ujf-grenoble.fr. The final publication is available at http://www.springerlink.co
    corecore