483 research outputs found

    High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates

    Get PDF
    Many important hominid-bearing fossil localities in East Africa are in regions that are extremely hot and dry. Although humans are well adapted to such conditions, it has been inferred that East African environments were cooler or more wooded during the Pliocene and Pleistocene when this region was a central stage of human evolution. Here we show that the Turkana Basin, Kenya—today one of the hottest places on Earth—has been continually hot during the past 4 million years. The distribution of ^(13)C-^(18)O bonds in paleosol carbonates indicates that soil temperatures during periods of carbonate formation were typically above 30 °C and often in excess of 35 °C. Similar soil temperatures are observed today in the Turkana Basin and reflect high air temperatures combined with solar heating of the soil surface. These results are specific to periods of soil carbonate formation, and we suggest that such periods composed a large fraction of integrated time in the Turkana Basin. If correct, this interpretation has implications for human thermophysiology and implies a long-standing human association with marginal environments

    Neutron-rich Chromium Isotope Anomalies in Supernova Nanoparticles

    Get PDF
    Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of ^(54)Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of ^(54)Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of ^(54)Cr anomalies as nanoparticles (3.6 × solar). Such large enrichments in ^(54)Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered ^(26)Al and ^(60)Fe to the solar system. This idea explains why the relative abundance of ^(54)Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe

    Letter from Eiler Freece

    Get PDF
    Letter concerning qualifications for a position at the Utah Agricultural College, including references

    Pairing Neutral Cues with Alcohol Intoxication: New Findings in Executive and Attention Networks

    Get PDF
    Rationale: Alcohol-associated stimuli capture attention, yet drinkers differ in the precise stimuli that become paired with intoxication. Objectives: Extending our prior work to examine the influence of alcoholism risk factors, we paired abstract visual stimuli with intravenous alcohol delivered covertly and examined brain responses to these Pavlovian conditioned stimuli in fMRI when subjects were not intoxicated. Methods: Sixty healthy drinkers performed task-irrelevant alcohol conditioning that presented geometric shapes as conditioned stimuli. Shapes were paired with a rapidly rising alcohol limb (CS+) using intravenous alcohol infusion targeting a final peak breath alcohol concentration of 0.045 g/dL or saline (CS−) infusion at matched rates. On day two, subjects performed monetary delay discounting outside the scanner to assess delay tolerance and then underwent event-related fMRI while performing the same task with CS+, CS−, and an irrelevant symbol. Results: CS+ elicited stronger activation than CS− in frontoparietal executive/attention and orbitofrontal reward-associated networks. Risk factors including family history, recent drinking, sex, and age of drinking onset did not relate to the [CS+ > CS−] activation. Delay-tolerant choice and [CS+ > CS−] activation in right inferior parietal cortex were positively related. Conclusions: Networks governing executive attention and reward showed enhanced responses to stimuli experimentally paired with intoxication, with the right parietal cortex implicated in both alcohol cue pairing and intertemporal choice. While different from our previous study results in 14 men, we believe this paradigm in a large sample of male and female drinkers offers novel insights into Pavlovian processes less affected by idiosyncratic drug associations

    Reaction Energetics and ¹³C Fractionation of Alanine Transamination in the Aqueous and Gas Phases

    Get PDF
    The alanine transaminase (ALT) enzyme catalyzes the transfer of an amino group from alanine to α-ketoglutarate to produce pyruvate and glutamate. Isotope fractionation factors (IFFs) for the reaction ⁺H₃NCH(CH₃)COO⁻ + ⁻OOCCH₂CH₂C(O)COO⁻ ↔ CH₃C(O)COO⁻ + ⁻H₃NCH(CH₂CH₂COO⁻)COO⁻ (zwitterionic neutral alanine + doubly deprotonated α-ketoglutarate ↔ pyruvate + zwitterionic glutamate anion) were calculated from the partition functions of explicitly and implicitly solvated molecules at 298 K. Calculations were done for alanine (non-charge separated, zwitterion, deprotonated,), pyruvic acid (neutral, deprotonated), glutamic acid (non-charge separated, zwitterion, deprotonated, doubly deprotonated), and α-ketoglutaric acid (neutral, deprotonated, doubly deprotonated). The computational results, calculated from gas phase and aqueous optimized clusters with explicit H₂O molecules at the MP₂/aug-cc-pVDZ and MP₂/aug-cc-pVDZ/COSMO levels, respectively, predict that substitution of ¹³C at the C2 position of alanine and pyruvic acid and their various forms leads to the C2 position of pyruvic acid/pyruvate being enriched in ¹³C/¹²C ratio by 9 ‰. Simpler approaches that estimate the IFFs based solely on changes in the zero-point energies (ZPEs) are consistent with the higher-level model. ZPE-based IFFs calculated for simple analogues formaldehyde and methylamine (analogous to the C₂ positions of pyruvate and alanine, respectively) predict a ¹³C enrichment in formaldehyde of 7 to 8 ‰ at the MP₂/aug-cc-pVDZ and aug-cc-pVTZ levels. A simple predictive model using canonical functional group frequencies and reduced masses for ¹³C exchange between R₂C=O and R₂CH-NH₂ predicted enrichment in R₂C=O that is too large by a factor of two, but is qualitatively accurate compared with the more sophisticated models. Our models are all in agreement with the expectation that pyruvate and formaldehyde will be preferentially enriched in ¹³C due to the strength of their >C=O bond relative to that of the ≡C-NH₂ in alanine and methylamine. ¹³C/¹²C substitution is also modeled at the methyl and carboxylic acid sites of alanine and pyruvic acid, respectively

    Pb isotopic variability in melt inclusions from the EMI–EMII–HIMU mantle end-members and the role of the oceanic lithosphere

    Get PDF
    Melt inclusions from four individual lava samples representing the HIMU (Mangaia Island), EMI (Pitcairn Island) and EMII (Tahaa Island) end member components, have heterogeneous Pb isotopic composition larger than that defined by the erupted lavas in each island. The broad linear trend in ^(207)Pb/^(206)Pb–^(208)Pb/^(206)Pb space produced by the melt inclusions from Mangaia, Tahaa and fPitcairn samples reproduces the entire trend defined by the Austral chain, the Society islands and the Pitcairn island and seamount groups. The inclusions preserve a record of melt composition of far greater isotopic diversity than that sampled in whole rock basalts. These results can be explained by mixing of a common depleted component with the HIMU, EMI and EMII lavas, respectively. We favor a model that considers the oceanic lithosphere to be that common component. We suggest that the Pb isotopic compositions of the melt inclusions reflect wall rock reaction of HIMU, EMI and EMII melts during their percolation through the oceanic lithosphere. Under these conditions, the localized rapid crystallization of olivine from primitive basalt near the reaction zone would allow the entrapment of melt inclusions with different isotopic composition

    Distribution of recycled crust within the upper mantle : insights from the oxygen isotope composition of MORB from the Australian-Antarctic Discordance

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q12004, doi:10.1029/2009GC002728Geochemical heterogeneity within the mantle has long been recognized through the diversity of trace element and radiogenic isotopic compositions of mantle-derived rocks, yet the specific origin, abundance, and distribution of enriched material within the mantle have been difficult to quantify. In particular, the origin of the distinctive geochemical characteristics of Indian mantle has been debated for decades. We present new laser fluorination oxygen isotope measurements of mid-ocean ridge basalt from the Australian-Antarctic Discordance (AAD), an area where a particularly abrupt transition occurs between Pacific-type mid-ocean ridge basalts (MORB) and Atlantic-type MORB. These data show no distinction in average δ18O between Pacific- and Atlantic-type MORB, indicating that the origin of Indian-type mantle cannot be attributed to the presence of pelagic sediment. The combined radiogenic isotope, δ18O, and trace element characteristics of Indian-type MORB at the AAD are consistent with contamination of the Indian upper mantle by lower crustal material. We also present a compilation of available laser fluorination δ18O data for MORB and use these data to evaluate the nature and percentage of enriched material within the upper mantle globally. Data for each ocean basin fit a normal distribution, with indistinguishable means and standard deviations, implying that the variation in δ18O of MORB reflects a stochastic process that operates similarly across all ocean basins. Monte Carlo simulations show that the mean and standard deviation of the MORB data are robust indicators of the mean and standard deviation of the parent distribution of data. Further, although some skewness in the data cannot be ruled out, Monte Carlo results are most consistent with a normal parent distribution. This similarity in characteristics of the δ18O data between ocean basins, together with correlations of δ18O with radiogenic isotope and trace element characteristics of subsets of the data, suggest that the upper mantle globally contains an average of ∼5–10% recycled crustal material and that the depleted mantle in the absence of this component would have δ18O of ∼5.25‰. The Monte Carlo simulations also suggest that additional oxygen isotope data may be used in the future to test the ability of geodynamical models to predict the physical distribution of enriched domains within the upper mantle

    Solar Wind Abundances of C and O

    Get PDF
    Quantitative understanding of solar wind (SW) elemental fractionation is required to improve knowledge of the solar nebula abundances from Genesis samples, in particular abundances of volatile elements, depleted in CI chondrites. Ratios of elements with low and high first ionization potential (FIP) in the solar wind, e.g., Fe/He, are higher than photospheric abundances. C, O, and N have intermediate FIP and are thus critical as to whether this fractionation is stepwise or gradual as a function of FIP

    In-situ Discovery of a Cluster of Refractory Grains in an Allende Ferromagnesian Chondrule

    Get PDF
    During our nano-mineralogy investigation of the Allende meteorite, we discovered a unique corundum-rich cluster of irregular micrometer-sized refractory grains in a type IA chondrule. The presence of relatively oxidized (rutile) and highly reduced (a new mineral Ti_2O_3, khamrabaevite) phases in the same cluster reflects distinctly different environments prior to incorporation of the cluster into the chondrule. To our knowledge, this is the first occurrence of such a cluster. Investigation of phases that are clearly exotic to the host chondrule and may predate its formation can provide not only important constraints on the materials present when chondrules formed and the enviroments within or outside the Protoplanetary disk, but also on the chondrule formation event. Herein we report our prelimary results on the mineralogy of these grains and the overall petrology of their host chondrule
    corecore