53,770 research outputs found
The Effective Potential And Additional Large Radius Compactified Space-Time Dimensions
The consequences of large radius extra space-time compactified dimensions on
the four dimensional one loop effective potential are investigated for a model
which includes scalar self interactions and Yukawa coupling to fermions. The
Kaluza-Klein tower of states associated with the extra compact dimensions
shifts the location of the effective potential minimum and modifies its
curvature. The dependence of these effects on the radius of the extra dimension
is illustrated for various choices of coupling constants and masses. For large
radii, the consequence of twisting the fermion boundary condition on the
compactified dimensions is numerically found to produce but a negligible effect
on the effective potential.Comment: 14 pages, LaTeX, 6 Postscript figure
The Akulov-Volkov Lagrangian, Symmetry Currents and Spontaneously Broken Extended Supersymmetry
A generalization of the Akulov-Volkov effective Lagrangian governing the self
interactions of the Nambu-Goldstone fermions associated with spontaneously
broken extended supersymmetry as well as their coupling to matter is presented
and scrutinized. The resulting currents associated with R-symmetry,
supersymmetry and space-time translations are constructed and seen to form a
supermultiplet structure.Comment: 17 pages, LaTeX; Title, abstract and introduction changes, references
adde
Intersection Graph of a Module
Let be a left -module where is a (not necessarily commutative)
ring with unit. The intersection graph \cG(V) of proper -submodules of
is an undirected graph without loops and multiple edges defined as follows: the
vertex set is the set of all proper -submodules of and there is an edge
between two distinct vertices and if and only if We
study these graphs to relate the combinatorial properties of \cG(V) to the
algebraic properties of the -module We study connectedness, domination,
finiteness, coloring, and planarity for \cG (V). For instance, we find the
domination number of \cG (V). We also find the chromatic number of \cG(V)
in some cases. Furthermore, we study cycles in \cG(V), and complete subgraphs
in \cG (V) determining the structure of for which \cG(V) is planar
The Arches cluster revisited: I. Data presentation and stellar census
Context. Located within the central region of the Galaxy, the Arches cluster appears to be one of the youngest, densest and most massive stellar aggregates within the Milky Way. As such it has the potential to be a uniquely instructive laboratory for the study of star formation in extreme environments and the physics of very massive stars.
Aims. To realise this possibility, the fundamental physical properties of both cluster and constituent stars need to be robustly determined; tasks we attempt here.
Methods. In order to accomplish these goals we provide and analyse new multi-epoch near-IR spectroscopic data obtained with the VLT/SINFONI and photometry from the HST/WFC3. We are able to stack multiple epochs of spectroscopy for individual stars in order to obtain the deepest view of the cluster members ever obtained.
Results. We present spectral classifications for 88 cluster members, all of which are WNLh or O stars: a factor of three increase over previous studies. We find no further examples of Wolf-Rayet stars within the cluster; importantly no H-free examples were identified. The smooth and continuous progression in spectral morphologies from O super-/hypergiants through to the WNLh cohort implies a direct evolutionary connection. We identify candidate giant and main sequence O stars spectroscopically for the first time. No products of binary evolution may be unambiguously identified despite the presence of massive binaries within the Arches.
Conclusions. Notwithstanding difficulties imposed by the highly uncertain (differential) reddening to the Arches, we infer a main sequence/luminosity class V turn-off mass of ∼ 30 − 38M⊙ via the distribution of spectral types. Analysis of the eclipsing binary F2 suggests current masses of ∼ 80M⊙ and ∼ 60M⊙ for the WNLh and O hypergiant cohorts, respectively; we conclude that all classified stars have masses > 20M⊙. An age of ∼ 2.0 − 3.3Myr is suggested by the turn-off between ∼O4-5 V; constraints imposed by the supergiant population and the lack of H-free WRs are consistent with this estimate. While the absence of highly evolved WC stars strongly argues against the prior occurrence of SNe within the Arches, the derived age does accommodate such events for exceptionally massive stars. Further progress will require quantitative analysis of multiple individual cluster members in addition to further spectroscopic observations to better constrain the binary and main sequence populations; nevertheless it is abundantly clear that the Arches offers an unprecedented insight into the formation, evolution and death of the most massive stars Nature allows to form
The arms race: adversarial search defeats entropy used to detect malware
Malware creators have been getting their way for too long now. String-based similarity measures can leverage ground truth in a scalable way and can operate at a level of abstraction that is difficult to combat from the code level. At the string level, information theory and, specifically, entropy play an important role related to detecting patterns altered by concealment strategies, such as polymorphism or encryption. Controlling the entropy levels in different parts of a disk resident executable allows an analyst to detect malware or a black hat to evade the detection. This paper shows these two perspectives into two scalable entropy-based tools: EnTS and EEE. EnTS, the detection tool, shows the effectiveness of detecting entropy patterns, achieving 100% precision with 82% accuracy. It outperforms VirusTotal for accuracy on combined Kaggle and VirusShare malware. EEE, the evasion tool, shows the effectiveness of entropy as a concealment strategy, attacking binary-based state of the art detectors. It learns their detection patterns in up to 8 generations of its search process, and increments their false negative rate from range 0–9%, up to the range 90–98.7%
Phase separation in the Edwards model
The nature of charge transport within a correlated background medium can be
described by spinless fermions coupled to bosons in the model introduced by
Edwards. Combining numerical density matrix renormalization group and
analytical projector-based renormalization methods we explore the ground-state
phase diagram of the Edwards model in one dimension. Below a critical boson
frequency any long-range order disappears and the system becomes metallic. If
the charge carriers are coupled to slow quantum bosons the Tomonaga-Luttinger
liquid is attractive and finally makes room for a phase separated state, just
as in the t-J model. The phase boundary separating repulsive from the
attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge
correlations, whereas fermion segregation is indicated by a vanishing inverse
compressibility. On approaching phase separation the photoemission spectra
develop strong anomalies.Comment: 6 pages, 5 figures, final versio
Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology
This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation
New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3 +1.0 −0.8 kpc and an age of 44 +9 −8 Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63 +12 −11 Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales
An Ecological Study of the Lagoons Surrounding the John F. Kennedy Space Center, Brevard County, Florida
The studies reported here are the result of a three year effort to define the major biological, microbiological, chemical and geological characteristics of the water of the Indian River lagoon around the Kennedy Space Center and to determine the movements of those waters within and between the various basins. This work was the result of a jointly funded agreement between the Florida Institute of Technology and John F. Kennedy Space Center, NASA under NASA Grant NGR 10-015-008, dated April 11, 1972. This cost sharing grant was renewed for each of two successive years. Sampling operations were terminated August 31, 1975
An updated stellar census of the Quintuplet cluster
Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event.
Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars.
Methods. In order to accomplish this goal we present Hubble Space Telescope/NICMOS+WFC3 photometry and Very Large Telescope/SINFONI+KMOS spectroscopy for ∼100 and 71 cluster members, respectively.
Results. Spectroscopy of the cluster members reveals the Quintuplet to be far more homogeneous than previously expected. All supergiants are classified as either O7–8 Ia or O9–B0 Ia, with only one object of earlier (O5 I–III) spectral type. These stars form a smooth morphological sequence with a cohort of seven early-B hypergiants and six luminous blue variables and WN9-11h stars, which comprise the richest population of such stars of any stellar aggregate known. In parallel, we identify a smaller population of late-O hypergiants and spectroscopically similar WN8–9ha stars. No further H-free Wolf–Rayet (WR) stars are identified, leaving an unexpectedly extreme ratio of 13:1 for WC/WN stars. A subset of the O9–B0 supergiants are unexpectedly faint, suggesting they are both less massive and older than the greater cluster population. Finally, no main sequence objects were identifiable.
Conclusions. Due to uncertainties over which extinction law to apply, it was not possible to quantitatively determine a cluster age via isochrone fitting. Nevertheless, we find an impressive coincidence between the properties of cluster members preceding the H-free WR phase and the evolutionary predictions for a single, non-rotating 60 M⊙ star; in turn this implies an age of ∼3.0–3.6 Myr for the Quintuplet. Neither the late O-hypergiants nor the low luminosity supergiants are predicted by such a path; we suggest that the former either result from rapid rotators or are the products of binary driven mass-stripping, while the latter may be interlopers. The H-free WRs must evolve from stars with an initial mass in excess of 60 M⊙ but it appears difficult to reconcile their observational properties with theoretical expectations. This is important since one would expect the most massive stars within the Quintuplet to be undergoing core-collapse/SNe at this time; since the WRs represent an evolutionary phase directly preceding this event,their physical properties are crucial to understanding both this process and the nature of the resultant relativistic remnant. As such, the Quintuplet provides unique observational constraints on the evolution and death of the most massive stars forming in the local, high metallicity Universe
- …