11,201 research outputs found

    Scaling relations of the colour-detected cluster RzCS 052 at z=1.016 and of some other high redshift clusters

    Full text link
    We report on the discovery of the z=1.016 cluster RzCS 052 using a modified red sequence method, followup spectroscopy and X-ray imaging. This cluster has a velocity dispersion of 710+-150 km/s, a virial mass of 4.0e14 Msol (based on 21 spectroscopically confirmed members) and an X-ray luminosity of (0.68+- 0.47)e44 ergs/s in the [1-4] keV band. This optically selected cluster appears to be of richness class 3 and to follow the known L_X-sigma_v relation for high redshift X-ray selected clusters. Using these data, we find that the halo occupation number for this cluster is only marginally consistent with what expected assuming a self-similar evolution of cluster scaling relations, suggesting perhaps a break of them at z~1. We also rule out a strong galaxy merging activity between z=1 and today. Finally, we present a Bayesian approach to measuring cluster velocity dispersions and X-ray luminosities in the presence of a background: we critically reanalyze recent claims for X-ray underluminous clusters using these techniques and find that the clusters can be accommodated within the existing L_X -sigma_v relation.Comment: MNRAS, in pres

    Decay of Superflow Confined in Thin Torus: A Realization of Tunneling Quantum Fields

    Full text link
    The quantum nucleation of phase slips in neutral superfluids confined in a thin torus is investigated by means of the collective coordinate method. We have devised, with numerical justification, a certain collective coordinate to describe the quantum nucleation process of a phase slip. Considering the quantum fluctuation around the local minimum of the action, we calculate the effective mass of the phase slip. Due to the coherence of the condensate throughout the torus, the effective mass is proportional to the circumference L of the torus, and the decay rate has a strong exponential L-dependence.Comment: 4 pages, 2 figures, REVTe

    P-wave Pairing and Colossal Magnetoresistance in Manganese Oxides

    Full text link
    We point out that the existing experimental data of most manganese oxides show the {\sl frustrated} p-wave superconducting condensation in the ferromagnetic phase in the sense that the superconducting coherence is not long enough to cover the whole system. The superconducting state is similar to the A1A_{1} state in superfluid He-3. The sharp drop of resistivity, the steep jump of specific heat, and the gap opening in tunneling are well understood in terms of the p-wave pairing. In addition, colossal magnetoresistance (CMR) is naturally explained by the superconducting fluctuations with increasing magnetic fields. The finite resistivity may be due to some magnetic inhomogeneities. This study leads to the possibility of room temperature superconductivity.Comment: LaTex, 14 pages, For more information, please send me an e-mail. e-mail adrress : [email protected]

    High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT

    Get PDF
    Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS_5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant "Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives alpha between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L larger than exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d=10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.Comment: 25 pages, 3 eps figure

    Wilson-loop formalism for Reggeon exchange in soft high-energy scattering

    Full text link
    We derive a nonperturbative expression for the non-vacuum, qqbar-Reggeon-exchange contribution to the meson-meson elastic scattering amplitude at high energy and low momentum transfer, in the framework of QCD. Describing the mesons in terms of colourless qqbar dipoles, the problem is reduced to the two-fermion-exchange contribution to the dipole-dipole scattering amplitudes, which is expressed as a path integral, over the trajectories of the exchanged fermions, of the expectation value of a certain Wilson loop. We also show how the resulting expression can be reconstructed from a corresponding quantity in the Euclidean theory, by means of analytic continuation. Finally, we make contact with previous work on Reggeon exchange in the gauge/gravity duality approach.Comment: A few misprints in the expressions for the relevant Wilson loops have been corrected. 55 pages, 7 figure

    Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes

    Full text link
    Coronal plumes, which extend from solar coronal holes (CH) into the high corona and - possibly - into the solar wind (SW), can now continuously be studied with modern telescopes and spectrometers on spacecraft, in addition to investigations from the ground, in particular, during total eclipses. Despite the large amount of data available on these prominent features and related phenomena, many questions remained unanswered as to their generation and relative contributions to the high-speed streams emanating from CHs. An understanding of the processes of plume formation and evolution requires a better knowledge of the physical conditions at the base of CHs, in plumes and in the surrounding inter-plume regions (IPR). More specifically, information is needed on the magnetic field configuration, the electron densities and temperatures, effective ion temperatures, non-thermal motions, plume cross-sections relative to the size of a CH, the plasma bulk speeds, as well as any plume signatures in the SW. In spring 2007, the authors proposed a study on "Structure and dynamics of coronal plumes and inter-plume regions in solar coronal holes" to the International Space Science Institute (ISSI) in Bern to clarify some of these aspects by considering relevant observations and the extensive literature. This review summarizes the results and conclusions of the study. Stereoscopic observations allowed us to include three-dimensional reconstructions of plumes. Multi-instrument investigations carried out during several campaigns led to progress in some areas, such as plasma densities, temperatures, plume structure and the relation to other solar phenomena, but not all questions could be answered concerning the details of plume generation process(es) and interaction with the SW.Comment: To appear on: The Astronomy and Astrophysics Review. 72 pages, 30 figure

    A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits.

    Get PDF
    Corticotrophin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA) to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons

    Scaling Analysis of Magnetic Filed Tuned Phase Transitions in One-Dimensional Josephson Junction Arrays

    Full text link
    We have studied experimentally the magnetic field-induced superconductor-insulator quantum phase transition in one-dimensional arrays of small Josephson junctions. The zero bias resistance was found to display a drastic change upon application of a small magnetic field; this result was analyzed in context of the superfluid-insulator transition in one dimension. A scaling analysis suggests a power law dependence of the correlation length instead of an exponential one. The dynamical exponents zz were determined to be close to 1, and the correlation length critical exponents were also found to be about 0.3 and 0.6 in the two groups of measured samples.Comment: 4 pages, 4 figure

    Dynamic Mean-Field Glass Model with Reversible Mode Coupling and Trivial Hamiltonian

    Full text link
    Often the current mode coupling theory (MCT) of glass transitions is compared with mean field theories. We explore this possible correspondence. After showing a simple-minded derivation of MCT with some difficulties we give a concise account of our toy model developed to gain more insight into MCT. We then reduce this toy model by adiabatically eliminating rapidly varying velocity-like variables to obtain a Fokker-Planck equation for the slowly varying density-like variables where diffusion matrix can be singular. This gives a room for nonergodic stationary solutions of the above equation.Comment: 9 pages, contribution to the Proceedings of the Merida Satellite Meeting to STATPHYS21 (Merida, Mexico, July 9-14, 2001). To appear in J. Phys. Condens. Matte

    Analyticity and crossing symmetry of the eikonal amplitudes in gauge theories

    Full text link
    After a brief review and a more refined analysis of some relevant analyticity properties (when going from Minkowskian to Euclidean theory) of the high-energy parton-parton and hadron-hadron scattering amplitudes in gauge theories, described nonperturbatively, in the eikonal approximation, by certain correlation functions of two Wilson lines or two Wilson loops near the light cone, we shall see how these same properties lead to a nice geometrical interpretation of the crossing symmetry between quark-quark and quark-antiquark eikonal amplitudes and also between loop-loop eikonal amplitudes. This relation between Minkowskian-to-Euclidean analyticity properties and crossing symmetry is discussed in detail and explicitly tested in the first orders of perturbation theory. Some nonperturbative examples existing in the literature are also discussed.Comment: Completely revised version with new comments, new references and new figures; 37 pages + 5 figure
    corecore