541 research outputs found

    Influence of residual ethanol concentration on the growth of Gluconacetobacter xylinus I2281

    Get PDF
    The influence of residual ethanol on metabolism of food grade Gluconacetobacter xylinus I2281 was investigated during controlled cultivations on 35g/l glucose and 5g/l ethanol. Bacterial growth was strongly reduced in the presence of ethanol, which is unusual for acetic acid bacteria. Biomass accumulated only after complete oxidation of ethanol to acetate and carbon dioxide. In contrast, bacterial growth initiated without delay on 35g/l glucose and 5g/l acetate. It was found that acetyl CoA was activated by the acetyl coenzyme A synthetase (Acs) pathway in parallel with the phosphotransacetylase (Pta)-acetate kinase (Ack) pathway. The presence of ethanol in the culture medium strongly reduced Pta activity while Acs and Ack remained active. A carbon balance calculation showed that the overall catabolism could be divided into two independent parts: upper glycolysis linked to glucose catabolism and lower glycolysis liked to ethanol catabolism. This calculation showed that the carbon flux through the tricarboxylic cycle is lower on ethanol than on acetate. This corroborated the diminution of carbon flux through the Pta-Ack pathway due to the inhibition of Pta activity on ethano

    Influence of residual ethanol concentration on the growth of Gluconacetobacter xylinus I 2281

    Get PDF
    The influence of residual ethanol on metab. of food grade Gluconacetobacter xylinum I 2281 was investigated during controlled cultivations on 35 g/l glucose and 5 g/l ethanol. Bacterial growth was strongly reduced in the presence of ethanol, which is unusual for acetic acid bacteria. Biomass accumulated only after complete oxidn. of ethanol to acetate and carbon dioxide. In contrast, bacterial growth initiated without delay on 35 g/l glucose and 5 g/l acetate. It was found that acetyl CoA was activated by the acetyl CoA synthetase (Acs) pathway in parallel with the phosphotransacetylase (Pta)-acetate kinase (Ack) pathway. The presence of ethanol in the culture medium strongly reduced Pta activity while Acs and Ack remained active. A carbon balance calcn. showed that the overall catabolism could be divided into two independent parts: upper glycolysis linked to glucose catabolism and lower glycolysis linked to ethanol catabolism. This calcn. showed that the carbon flux through the tricarboxylic cycle is lower on ethanol than on acetate. This corroborated the diminution of carbon flux through the Pta-Ack pathway due to the inhibition of Pta activity on ethanol. [on SciFinder (R)

    Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. aeruginosa to polymyxins

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Considering the increasing use of polymyxins to treat infections due to multidrug resistant Gram-negative in many countries, it is important to evaluate different susceptibility testing methods to this class of antibiotic.\ud \ud \ud \ud Methods\ud \ud Susceptibility of 109 carbapenem-resistant P. aeruginosa to polymyxins was tested comparing broth microdilution (reference method), disc diffusion, and Etest using the new interpretative breakpoints of Clinical and Laboratory Standards Institute.\ud \ud \ud \ud Results\ud \ud Twenty-nine percent of isolates belonged to endemic clone and thus, these strains were excluded of analysis. Among 78 strains evaluated, only one isolate was resistant to polymyxin B by the reference method (MIC: 8.0 μg/mL). Very major and major error rates of 1.2% and 11.5% were detected comparing polymyxin B disc diffusion with the broth microdilution (reference method). Agreement within 1 twofold dilution between Etest and the broth microdilution were 33% for polymyxin B and 79.5% for colistin. One major error and 48.7% minor errors were found comparing polymyxin B Etest with broth microdilution and only 6.4% minor errors with colistin. The concordance between Etest and the broth microdilution (reference method) was respectively 100% for colistin and 90% for polymyxin B.\ud \ud \ud \ud Conclusion\ud \ud Resistance to polymyxins seems to be rare among hospital carbapenem-resistant P. aeruginosa isolates over a six-year period. Our results showed, using the new CLSI criteria, that the disc diffusion susceptibility does not report major errors (false-resistant results) for colistin. On the other hand, showed a high frequency of minor errors and 1 very major error for polymyxin B. Etest presented better results for colistin than polymyxin B. Until these results are reproduced with a large number of polymyxins-resistant P. aeruginosa isolates, susceptibility to polymyxins should be confirmed by a reference method.Financial support: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).Financial support: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

    Gene Regulatory Network Interactions in Sea Urchin Endomesoderm Induction

    Get PDF
    A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm–gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell–GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFβ cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    Probucol Release from Novel Multicompartmental Microcapsules for the Oral Targeted Delivery in Type 2 Diabetes

    Get PDF
    In previous studies, we developed and characterised multicompartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in type 2 diabetes (T2D). We also designed a new microencapsulated formulation of probucol-sodium alginate (PB-SA), with good structural properties and excipient compatibility. The aim of this study was to examine the stability and pH-dependent targeted release of the microcapsules at various pH values and different temperatures. Microencapsulation was carried out using a Büchi-based microencapsulating system developed in our laboratory. Using SA polymer, two formulations were prepared: empty SA microcapsules (SA, control) and loaded SA microcapsules (PB-SA, test), at a constant ratio (1:30), respectively. Microcapsules were examined for drug content, zeta potential, size, morphology and swelling characteristics and PB release characteristics at pH 1.5, 3, 6 and 7.8. The production yield and microencapsulation efficiency were also determined. PB-SA microcapsules had 2.6 ± 0.25% PB content, and zeta potential of −66 ± 1.6%, suggesting good stability. They showed spherical and uniform morphology and significantly higher swelling at pH 7.8 at both 25 and 37°C (p < 0.05). The microcapsules showed multiphasic release properties at pH 7.8. The production yield and microencapsulation efficiency were high (85 ± 5 and 92 ± 2%, respectively). The PB-SA microcapsules exhibited distal gastrointestinal tract targeted delivery with a multiphasic release pattern and with good stability and uniformity. However, the release of PB from the microcapsules was not controlled, suggesting uneven distribution of the drug within the microcapsules

    Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo

    Get PDF
    Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12
    corecore