240 research outputs found

    How to erase surface plasmon fringes

    Full text link
    We report the realization of a dual surface plasmon polariton (SPP) microscope based on leakage radiation (LR) analysis. The microscope can either image SPP propagation in the direct space or tin the Fourier space. This particularity allows in turn manipulation of the LR image for a clear separation of different interfering SPP contributions present close to optical nanoelements.Comment: Appl. Phys. Lett. 89, 091117 (2006

    An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

    Full text link
    We report the design, fabrication and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.Comment: The final publication is available at http://www.springerlink.com. http://dx.doi.org/10.1007/s11468-011-9303-

    Transformation Optics for Plasmonics

    Full text link
    A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of Transformation Optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of Transformation-Optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure

    Broadband and efficient plasmonic control in the near-infrared and visible via strong interference of surface plasmon polaritons

    Get PDF
    This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.38.004453 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Copyright © 2013 Optical Society of AmericaBroadband and tunable control of surface plasmon polaritons in the near-infrared and visible spectrum is demonstrated theoretically and numerically with a pair of phased nanoslits. We establish, with simulations supported by a coupled wave model, that by dividing the incident power equally between two input channels, the maximum plasmon intensity deliverable to either side of the nanoslit pair is twice that for an isolated slit. For a broadband source, a compact device with nanoslit separation of the order of a tenth of the wavelength is shown to steer nearly all the generated plasmons to one side for the same phase delay, thereby achieving a broadband unidirectional plasmon launcher. The reported effect can be applied to the design of ultra-broadband and efficient tunable plasmonic devices.Engineering and Physical Sciences Research Council (EPSRC

    Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Get PDF
    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices

    Plasmonic Luneburg and Eaton Lenses

    Full text link
    Plasmonics is an interdisciplinary field focusing on the unique properties of both localized and propagating surface plasmon polaritons (SPPs) - quasiparticles in which photons are coupled to the quasi-free electrons of metals. In particular, it allows for confining light in dimensions smaller than the wavelength of photons in free space, and makes it possible to match the different length scales associated with photonics and electronics in a single nanoscale device. Broad applications of plasmonics have been realized including biological sensing, sub-diffraction-limit imaging, focusing and lithography, and nano optical circuitry. Plasmonics-based optical elements such as waveguides, lenses, beam splitters and reflectors have been implemented by structuring metal surfaces or placing dielectric structures on metals, aiming to manipulate the two-dimensional surface plasmon waves. However, the abrupt discontinuities in the material properties or geometries of these elements lead to increased scattering of SPPs, which significantly reduces the efficiency of these components. Transformation optics provides an unprecedented approach to route light at will by spatially varying the optical properties of a material. Here, motivated by this approach, we use grey-scale lithography to adiabatically tailor the topology of a dielectric layer adjacent to a metal surface to demonstrate a plasmonic Luneburg lens that can focus SPPs. We also realize a plasmonic Eaton lens that can bend SPPs. Since the optical properties are changed gradually rather than abruptly in these lenses, losses due to scattering can be significantly reduced in comparison with previously reported plasmonic elements.Comment: Accepted for publication in Nature Nanotechnolog

    Efficient unidirectional nanoslit couplers for surface plasmons

    Full text link
    Plasmonics is based on surface plasmon polariton (SPP) modes which can be laterally confined below the diffraction limit, thereby enabling ultracompact optical components. In order to exploit this potential, the fundamental bottleneck of poor light-SPP coupling must be overcome. In established SPP sources (using prism, grating} or nanodefect coupling) incident light is a source of noise for the SPP, unless the illumination occurs away from the region of interest, increasing the system size and weakening the SPP intensity. Back-side illumination of subwavelength apertures in optically thick metal films eliminates this problem but does not ensure a unique propagation direction for the SPP. We propose a novel back-side slit-illumination method based on drilling a periodic array of indentations at one side of the slit. We demonstrate that the SPP running in the array direction can be suppressed, and the one propagating in the opposite direction enhanced, providing localized unidirectional SPP launching.Comment: 13 pages, 4 figure
    corecore