834 research outputs found

    Distribución de las tensiones en el sistema pared-mortero-bizcocho-esmalte

    Get PDF
    No availableCuando en los azulejos (placas de revestimiento) aparecen tensiones después de su colocación, la consecuencia inmediata son dos inconvenientes desagradables: 1) el eventual despegue del azulejo después de un período de tiempo más o menos corto, por desplazamiento de una pieza sencilla o de las filas enteras; 2) la sucesiva aparición de fisuras capilares en el esmalte

    Technical note: Lithium isotopes in dolostone as a palaeo-environmental proxy - an experimental approach

    Get PDF
    Lithium (Li) isotopes in marine carbonates have considerable potential as a proxy to constrain past changes in silicate weathering fluxes and improve our understanding of Earth\u27s climate. To date the majority of Li isotope studies on marine carbonates have focussed on calcium carbonates. The determination of the Li isotope fractionation between dolomite and a dolomitizing fluid would allow us to extend investigations to deep times (i.e. Precambrian) when dolostones were the most abundant marine carbonate archives. Dolostones often contain a significant proportion of detrital silicate material, which dominates the Li budget; thus, pretreatment needs to be designed so that only the isotope composition of the carbonate-associated Li is measured. This study aims to serve two main goals: (1) to determine the Li isotope fractionation between Ca-Mg carbonates and solution, and (2) to develop a method for leaching the carbonate-associated Li out of dolostone while not affecting the Li contained within the detrital portion of the rock. We synthesized Ca-Mg carbonates at high temperatures (150 to 220 ∘C) and measured the Li isotope composition (δ7Li) of the precipitated solids and their respective reactive solutions. The relationship of the Li isotope fractionation factor with temperature was obtained ..

    Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M

    Get PDF
    The dehydration of the CPO-27-M (M-MOF-74, M = Zn, Co, Ni, Mg, Mn, Cu) metal-organic framework series has been investigated comprehensively using in situ variable temperature powder X-ray diffraction (VT-PXRD) and thermal analysis (TG) coupled with mass spectrometry (MS). Significant differences in the order of water desorption from different adsorption sites on heating are found with varying metal cation in the otherwise isostructural material. For all CPO-27-M (except M = Cu), water is bonded significantly more strongly to the accessible open metal sites, and these water molecules are only desorbed at higher temperatures than the other water molecules. CPO-27-Cu is an exception, where all water molecules desorb simultaneously and at much lower temperatures (below 340 K). MS and TG data show that all CPO-27-M start to release traces of CO2 already at 300–350 K, and thus long before bulk thermal decomposition is observed. Only for CPO-27-Co, the CO2 release is essentially constant on its baseline between 450 and 700 K, and it is the only CPO-27-M member that shows a stable plateau in the TG in this region. Additional rehydration studies on CPO-27-Co show that the MOF incorporates any water molecules present until the pores are fully loaded. CPO-27-Co consequently behaves as an efficient trap for any water present

    Missing 2k_F Response for Composite Fermions in Phonon Drag

    Full text link
    The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the system is varied from a half-filled Landau level by changing density or field. These deviations, which appear to be inconsistent with the current picture of composite Fermions, are absent if half-filling is maintained while changing density. There remains, however, a clear deviation from the temperature dependence anticipated for 2k_F scattering.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Let

    Ballistic nanofriction

    Full text link
    Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS) and nanomotors, increasingly involve large speeds, and rotations as well as translations of the moving surfaces; yet, the physics of high speed nanoscale friction is so far unexplored. Here, by simulating the motion of drifting and of kicked Au clusters on graphite - a workhorse system of experimental relevance -- we demonstrate and characterize a novel "ballistic" friction regime at high speed, separate from drift at low speed. The temperature dependence of the cluster slip distance and time, measuring friction, is opposite in these two regimes, consistent with theory. Crucial to both regimes is the interplay of rotations and translations, shown to be correlated in slow drift but anticorrelated in fast sliding. Despite these differences, we find the velocity dependence of ballistic friction to be, like drift, viscous

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization
    corecore