17 research outputs found

    Reply to racial and gender disparities among patients with Takotsubo syndrome

    Get PDF
    We read with great interest the Letter to the Editor titled “Racial and Gender Disparities among Patients with Takotsubo Syndrome” by Khalid et al regarding our recent publication. Their excellent comments and detailed assessment highlights the low prevalence of diabetes mellitus in patients with Takotsubo syndrome (TTS) compared to general population. This is in contrast with relatively high prevalence of many other cardiovascular risk factors in TTS patients. This so called “diabetes paradox” has been previously explained in TTS patients and is the target of many active investigations. As highlighted in the Letter to the Editor, the prevalence of diabetes mellitus in our patient population is very close to the results of prior meta‐analyses of multiple small studies of patients with TTS

    Comparison of outcomes of percutaneous coronary intervention on proximal versus non-proximal left anterior descending coronary artery, proximal left circumflex, and proximal right coronary artery: A cross-sectional study

    Get PDF
    BACKGROUND: Previous studies have shown that lesions in proximal left anterior descending coronary artery (LAD) may develop more restenosis after balloon angioplasty than lesions in other coronary segments. However, stenting seems to have reduced this gap. In this study, we compared outcomes of percutaneous coronary intervention (PCI) on proximal LAD versus proximal left circumflex (LCX) or right coronary artery (RCA) and proximal versus non-proximal LAD. METHODS: From 1737 patients undergoing PCI between March 2004 and 2005, those with cardiogenic shock, primary PCI, total occlusions, and multivessel or multi-lesion PCI were excluded. Baseline characteristics and in-hospital outcomes were compared in 408 patients with PCI on proximal LAD versus 133 patients with PCI on proximal LCX/RCA (study I) and 244 patients with PCI on non-proximal LAD (study II). From our study populations, 449 patients in study I and 549 patients in study II participated in complete follow-up programs, and long-term PCI outcomes were compared within these groups. The statistical methods included Chi-square or Fisher's exact test, student's t-test, stratification methods, multivariate logistic regression and Cox proportional hazards model. RESULTS: In the proximal LAD vs. proximal LCX/RCA groups, smoking and multivessel disease were less frequent and drug-eluting stents were used more often (p = 0.01, p < 0.001, and p < 0.001, respectively). Patients had longer and smaller-diameter stents (p = 0.009, p < 0.001, respectively). In the proximal vs. non-proximal LAD groups, multivessel disease was less frequent (p = 0.05). Patients had larger reference vessel diameters (p < 0.001) and were more frequently treated with stents, especially direct stenting technique (p < 0.001). Angiographic success rate was higher in the proximal LAD versus proximal LCX/RCA and non-proximal LAD groups (p = 0.004 and p = 0.05, respectively). In long-term follow-up, major adverse cardiac events showed no difference. After statistical adjustment for significant demographic, angiographic or procedural characteristics, long-term PCI outcomes were still similar in the proximal LAD versus proximal LCX/RCA and non-proximal LAD groups. CONCLUSION: Despite the known worse prognosis of proximal LAD lesions, in the era of stenting, our long-term outcomes were similar in patients with PCI on proximal LAD versus proximal LCX/RCA and non-proximal LAD. Furthermore, we had better angiographic success rates in patients with PCI on proximal LAD

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Reply to “racial and gender disparities among patients with Takotsubo syndrome”

    No full text
    We read with great interest the Letter to the Editor titled “Racial and Gender Disparities among Patients with Takotsubo Syndrome” by Khalid et al regarding our recent publication. Their excellent comments and detailed assessment highlights the low prevalence of diabetes mellitus in patients with Takotsubo syndrome (TTS) compared to general population. This is in contrast with relatively high prevalence of many other cardiovascular risk factors in TTS patients. This so called “diabetes paradox” has been previously explained in TTS patients and is the target of many active investigations. As highlighted in the Letter to the Editor, the prevalence of diabetes mellitus in our patient population is very close to the results of prior meta‐analyses of multiple small studies of patients with TTS

    Comparison of Outcomes of Alcohol Septal Ablation or Septal Myectomy for Hypertrophic Cardiomyopathy in Patients ≤65 Years Versus \u3e65 Years

    No full text
    Alcohol septal ablation (ASA) and septal myectomy (SM) are therapeutic interventions for patients with hypertrophic cardiomyopathy (HC) who remain symptomatic despite medical treatment. Outcomes for both interventions in age groups ≤65 versus \u3e65 years are scarce. We queried the National Readmission Database for adult patients undergoing either SM or ASA between 2010 and 2015 for HC. Patients were divided into 2 age-groups (≤65-years and \u3e65-years). We aimed to compare the in-hospital mortality, complication rates, and resource utilization for each procedure between the 2 age-groups. We identified 4,358 patients with HC who underwent intervention, of which 2,113 were treated with SM and 2,245 with ASA. In-hospital mortality was 6-times higher in patients ≤65 years old who underwent SM compared with ASA (1.5% vs 0.3% odds ratio 6.2; p = 0.04); and 4-times higher in patients \u3e65 years treated with SM compared with ASA (6.7% vs 1.7% odds ratio 4.29; p = 0.04). Blood transfusion rates and stroke were higher in patients undergoing SM, regardless of their age-group. Length of hospital stay was lower in the ASA group (3 days vs 6 days for both age groups, p \u3c0.001) as well as median hospital costs (≤65 years old: 15,474vs15,474 vs 31.531; and \u3e65 years old: 16,672vs16,672 vs 36,042, p \u3c0.001). In conclusion, patients with HC treated with ASA had significantly lower in-hospital mortality, complications rates, length of hospital stay, and hospital costs compared with patients undergoing SM at any age
    corecore