14,944 research outputs found
Measuring entanglement in condensed matter systems
We show how entanglement may be quantified in spin and cold atom many-body
systems using standard experimental techniques only. The scheme requires no
assumptions on the state in the laboratory and a lower bound to the
entanglement can be read off directly from the scattering cross section of
Neutrons deflected from solid state samples or the time-of-flight distribution
of cold atoms in optical lattices, respectively. This removes a major obstacle
which so far has prevented the direct and quantitative experimental study of
genuine quantum correlations in many-body systems: The need for a full
characterization of the state to quantify the entanglement contained in it.
Instead, the scheme presented here relies solely on global measurements that
are routinely performed and is versatile enough to accommodate systems and
measurements different from the ones we exemplify in this work.Comment: 6 pages, 2 figure
Structural basis of TFIIH activation for nucleotide excision repair.
Nucleotide excision repair (NER) is the major DNA repair pathway that removes UV-induced and bulky DNA lesions. There is currently no structure of NER intermediates, which form around the large multisubunit transcription factor IIH (TFIIH). Here we report the cryo-EM structure of an NER intermediate containing TFIIH and the NER factor XPA. Compared to its transcription conformation, the TFIIH structure is rearranged such that its ATPase subunits XPB and XPD bind double- and single-stranded DNA, consistent with their translocase and helicase activities, respectively. XPA releases the inhibitory kinase module of TFIIH, displaces a 'plug' element from the DNA-binding pore in XPD, and together with the NER factor XPG stimulates XPD activity. Our results explain how TFIIH is switched from a transcription to a repair factor, and provide the basis for a mechanistic analysis of the NER pathway
Fine needle aspiration cytology of hepatic metastases of neuroendocrine tumors: A 20‐year retrospective, single institutional study
Background
Fine needle aspiration (FNA) is considered an excellent technique for documenting metastatic neuroendocrine tumors (NETs). This study aims to evaluate the accuracy of FNA in diagnosing metastatic NETs to the liver and determining the grade and origin of these metastases.
Methods
Our laboratory information system was searched from 1997 to 2016 to identify all cases of metastatic NETs to the liver that were sampled by FNA. The cytopathology and surgical pathology reports as well as the patients' electronic medical records were reviewed. The cytohistologic type and grade of the metastatic NETs, as well as the site of the patient's primary were recorded.
Results
High‐grade NETs, including small cell and poorly differentiated neuroendocrine carcinomas, constituted 62% (167/271) of the cases, while low‐grade NETs, including well differentiated NET (grade1 and grade 2), pheochromocytomas, paragangliomas, and carcinoid tumors of lung, constituted 38% (104/271) of cases. The most common diagnosis was metastatic small cell carcinoma accounting for 45% (122/271) of cases. The most common primary sites were lung (44%; 119/271) followed by pancreas (19%; 51/271). The FNA diagnosis was confirmed by histopathology in 121 cases that had a concurrent biopsies or resection specimens.
Conclusions
FNA is an accurate method for diagnosing metastatic NETs to the liver. There were significantly more high‐grade (62%) than low‐grade (38%) metastatic NETs to the liver. In our practice, lung (44%) and pancreas (19%) were the most common primary sites of metastatic NETs involving the liver. In 16% of the cases, a primary site could not be established
Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture
Crack propagation is studied numerically using a continuum phase-field
approach to mode III brittle fracture. The results shed light on the physics
that controls the speed of accelerating cracks and the characteristic branching
instability at a fraction of the wave speed.Comment: 11 pages, 4 figure
A quantum central limit theorem for non-equilibrium systems: Exact local relaxation of correlated states
We prove that quantum many-body systems on a one-dimensional lattice locally
relax to Gaussian states under non-equilibrium dynamics generated by a bosonic
quadratic Hamiltonian. This is true for a large class of initial states - pure
or mixed - which have to satisfy merely weak conditions concerning the decay of
correlations. The considered setting is a proven instance of a situation where
dynamically evolving closed quantum systems locally appear as if they had truly
relaxed, to maximum entropy states for fixed second moments. This furthers the
understanding of relaxation in suddenly quenched quantum many-body systems. The
proof features a non-commutative central limit theorem for non-i.i.d. random
variables, showing convergence to Gaussian characteristic functions, giving
rise to trace-norm closeness. We briefly relate our findings to ideas of
typicality and concentration of measure.Comment: 27 pages, final versio
Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors
We report for the first time general geometrical expressions for the angular
resolution of an arbitrary network of interferometric gravitational-wave (GW)
detectors when the arrival-time of a GW is unknown. We show explicitly elements
that decide the angular resolution of a GW detector network. In particular, we
show the dependence of the angular resolution on areas formed by projections of
pairs of detectors and how they are weighted by sensitivities of individual
detectors. Numerical simulations are used to demonstrate the capabilities of
the current GW detector network. We confirm that the angular resolution is poor
along the plane formed by current LIGO-Virgo detectors. A factor of a few to
more than ten fold improvement of the angular resolution can be achieved if the
proposed new GW detectors LCGT or AIGO are added to the network. We also
discuss the implications of our results for the design of a GW detector
network, optimal localization methods for a given network, and electromagnetic
follow-up observations.Comment: 13 pages, for Phys. Rev.
Approximating open quantum system dynamics in a controlled and efficient way: A microscopic approach to decoherence
We demonstrate that the dynamics of an open quantum system can be calculated
efficiently and with predefined error, provided a basis exists in which the
system-environment interactions are local and hence obey the Lieb-Robinson
bound. We show that this assumption can generally be made. Defining a dynamical
renormalization group transformation, we obtain an effective Hamiltonian for
the full system plus environment that comprises only those environmental
degrees of freedom that are within the effective light cone of the system. The
reduced system dynamics can therefore be simulated with a computational effort
that scales at most polynomially in the interaction time and the size of the
effective light cone. Our results hold for generic environments consisting of
either discrete or continuous degrees of freedom
Handbook for estimating toxic fuel hazards
Computer program predicts, from readily available meteorological data, concentration and dosage fields downwind from ground-level and elevated sources of toxic fuel emissions. Mathematical model is applicable to hot plume rise from industrial stacks and should also be of interest to air pollution meteorologists
- …
