We show how entanglement may be quantified in spin and cold atom many-body
systems using standard experimental techniques only. The scheme requires no
assumptions on the state in the laboratory and a lower bound to the
entanglement can be read off directly from the scattering cross section of
Neutrons deflected from solid state samples or the time-of-flight distribution
of cold atoms in optical lattices, respectively. This removes a major obstacle
which so far has prevented the direct and quantitative experimental study of
genuine quantum correlations in many-body systems: The need for a full
characterization of the state to quantify the entanglement contained in it.
Instead, the scheme presented here relies solely on global measurements that
are routinely performed and is versatile enough to accommodate systems and
measurements different from the ones we exemplify in this work.Comment: 6 pages, 2 figure