56 research outputs found

    EARLINET instrument intercomparison campaigns: overview on strategy and results

    Get PDF
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607¿nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2¿%. Particle backscatter and extinction coefficients agree within ±2¿¿×¿¿10-4¿km-1¿sr-1 and ±¿0.01¿km-1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.Peer ReviewedPostprint (published version

    Cosmic ray oriented performance studies for the JEM-EUSO first level trigger

    Get PDF
    JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5 ⋅ 1019 eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics

    Science of atmospheric phenomena with JEM-EUSO

    Full text link

    Aerosol closure study by lidar, sun photometry, and airborne optical counters during DAMOCLES field campaign at El Arenosillo sounding station, Spain

    Get PDF
    We present a comparison of aerosol properties derived from in situ and remote sensing instruments during DAMOCLES campaign, aimed at investigating the equivalence between the instrumentation and methodologies employed by several Spanish groups to study atmospheric aerosols at a regional background site. The complete set of instruments available during this closure experiment allowed collecting a valuable high-resolution aerosol measurement data set. The data set was augmented with airborne in situ measurements carried out in order to characterize aerosol particles during the midday of 29 June 2006. This work is focused on aerosol measurements using different techniques of high-quality instruments (ground-based remote sensing and aircraft in situ) and their comparisons to characterize the aerosol vertical profiles. Our results indicate that the variability between the detected aerosol layers was negligible in terms of aerosol optical properties and size distributions. Relative differences in aerosol extinction coefficient profiles were less than 20% at 355 and 532 nm and less than 30% at 1064 nm, in the region with high aerosol concentration. Absolute differences in aerosol optical depth (AOD) were below 0.01 at 532 and 1064 nm and less than 0.02 at 355 nm, less than the uncertainties assumed in the AOD obtained from elastic lidar. Columnar values of the lidar ratio revealed some discrepancies with respect to the in situ aircraft measurements, caused fundamentally by the lack of information in the lowest part of the boundary layer.Peer ReviewedPostprint (published version

    The Restructured Landscape of Economic Development

    No full text
    Regional workforce development collaborations have emerged as a notable approach to tackle complex problems within workforce development systems. While much of the existing research on workforce development documents the importance of promoting regional workforce development collaborations, little research exists that adequately identifies the specific barriers that organizations encounter in establishing and maintaining these collaborations. Through several sets of interviews over a 10-year period, this article examines the experiences of three detailed case studies of regions—Greater North Bay area, CA; Greater Fort Wayne/Northeastern IN; and Greater Pittsburgh/Southwestern PA—to identify the barriers and emerging strategies for creating regional workforce development systems. The authors identify three primary barriers: high initial upfront costs, competition, and fragmentation. They also find that an effective regional workforce development system is promoted primarily through an anchor organization that possesses programmatic and jurisdictional authority throughout a region

    Non-invasive lung cancer diagnosis by detection of GATA6 and NKX2-1 isoforms in exhaled breath condensate

    No full text
    Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Early LC diagnosis is crucial to reduce the high case fatality rate of this disease. In this case-control study, we developed an accurate LC diagnosis test using retrospectively collected formalin-fixed paraffin-embedded (FFPE) human lung tissues and prospectively collected exhaled breath condensates (EBCs). Following international guidelines for diagnostic methods with clinical application, reproducible standard operating procedures (SOP) were established for every step comprising our LC diagnosis method. We analyzed the expression of distinct mRNAs expressed from GATA6 and NKX2-1, key regulators of lung development. The Em/Ad expression ratios of GATA6 and NKX2-1 detected in EBCs were combined using linear kernel support vector machines (SVM) into the LC score, which can be used for LC detection. LC score-based diagnosis achieved a high performance in an independent validation cohort. We propose our method as a non-invasive, accurate, and low-price option to complement the success of computed tomography imaging (CT) and chest X-ray (CXR) for LC diagnosis
    corecore