335 research outputs found

    Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4

    Get PDF
    We present results on gas flows in the halo of a Milky Way-like galaxy at z=0.413 based on high-resolution spectroscopy of a background galaxy. This is the first study of circumgalactic gas at high spectral resolution towards an extended background source (i.e., a galaxy rather than a quasar). Using longslit spectroscopy of the foreground galaxy, we observe spatially extended H alpha emission with circular rotation velocity v=270 km/s. Using echelle spectroscopy of the background galaxy, we detect Mg II and Fe II absorption lines at impact parameter rho=27 kpc that are blueshifted from systemic in the sense of the foreground galaxy's rotation. The strongest absorber EW(2796) = 0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight velocity dispersion (sigma=17 km/s) that are consistent with the observed properties of extended H I disks in the local universe. Our analysis of the rotation curve also suggests that this r=30 kpc gaseous disk is warped with respect to the stellar disk. In addition, we detect two weak Mg II absorbers in the halo with small velocity dispersions (sigma<10 km/s). While the exact geometry is unclear, one component is consistent with an extraplanar gas cloud near the disk-halo interface that is co-rotating with the disk, and the other is consistent with a tidal feature similar to the Magellanic Stream. We can place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the extended nature of the background source. We discuss the implications of these results for models of the geometry and kinematics of gas in the circumgalactic medium.Comment: 14 pages, 6 figures, submitted to ApJ, comments welcom

    Bacteria isolated from Bengal cat (Felis catus × Prionailurus bengalensis) anal sac secretions produce volatile compounds potentially associated with animal signaling.

    Get PDF
    In social animals, scent secretions and marking behaviors play critical roles in communication, including intraspecific signals, such as identifying individuals and group membership, as well as interspecific signaling. Anal sacs are an important odor producing organ found across the carnivorans (species in the mammalian Order Carnivora). Secretions from the anal sac may be used as chemical signals by animals for behaviors ranging from defense to species recognition to signaling reproductive status. In addition, a recent study suggests that domestic cats utilize short-chain free fatty acids in anal sac secretions for individual recognition. The fermentation hypothesis is the idea that symbiotic microorganisms living in association with animals contribute to odor profiles used in chemical communication and that variation in these chemical signals reflects variation in the microbial community. Here we examine the fermentation hypothesis by characterizing volatile organic compounds (VOC) and bacteria isolated from anal sac secretions collected from a male Bengal cat (Felis catus × Prionailurus bengalensis), a cross between the domestic cat and the leopard cat. Both left and right anal sacs of a male Bengal cat were manually expressed (emptied) and collected. Half of the material was used to culture bacteria or to extract bacterial DNA and the other half was used for VOC analysis. DNA was extracted from the anal sac secretions and used for a 16S rRNA gene PCR amplification and sequencing based characterization of the microbial community. Additionally, some of the material was plated out in order to isolate bacterial colonies. Three taxa (Bacteroides fragilis, Tessaracoccus, and Finegoldia magna) were relatively abundant in the 16S rRNA gene sequence data and also isolated by culturing. Using Solid Phase Microextraction (SPME) gas chromatography-mass spectrometry (GC-MS), we tentatively identified 52 compounds from the Bengal cat anal sac secretions and 67 compounds from cultures of the three bacterial isolates chosen for further analysis. Among 67 compounds tentatively identified from bacterial isolates, 51 were also found in the anal sac secretion. We show that the bacterial community in the anal sac consists primarily of only a few abundant taxa and that isolates of these taxa produce numerous volatiles that are found in the combined anal sac volatile profile. Several of these volatiles are found in anal sac secretions from other carnivorans, and are also associated with known bacterial biosynthesis pathways. This is consistent with the fermentation hypothesis and the possibility that the anal sac is maintained at least in part to house bacteria that produce volatiles for the host

    The Dynamics of Molecular Material Within 15 pcs of the Galactic Center

    Get PDF
    We report the results of a 5-field mosaic of the central 15pc of the Galaxy in the (1,1) and (2,2) lines of NH3. Two narrow filaments or streamers are seen running parallel to the Galactic plane. The southern streamer appears to carry gas directly toward the nuclear region from the 20 km/s cloud. The eastern streamer, which we will denote the molecular ridge, appears to be the denser part of the 50 km/s cloud which lies immediately east of the Sgr A East complex and extends in the south towards the 20 km/s cloud. This ridge of gas carries the kinematical signatures of interactions with Sgr A East as well as a SNR which lies south of the Galactic center. The bulk motion of the gas, the enhanced line widths, and the heating of the molecular material all suggest an active evolutionary phase for the gas immediately adjacent to the nucleus.Comment: 11 pages, 13 figures, to appear in The Astrophysical Journa

    Improved Mock Galaxy Catalogs for the DEEP2 Galaxy Redshift Survey from Subhalo Abundance and Environment Matching

    Full text link
    We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mocks can be usefully applied. Nevertheless, careful comparisons show that our new mocks accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.Comment: 24 pages, 13 figures, matches version accepted for publication in ApJS. Catalogs are available for download from the URL referenced in the Appendi

    Processing and Transmission of Information

    Get PDF
    Contains reports on seven research projects.Lincoln Laboratory (Purchase Order DDL-B222

    Mapping the Dark Matter From UV Light at High Redshift: An Empirical Approach to Understand Galaxy Statistics

    Full text link
    We present a simple formalism to interpret two galaxy statistics, the UV luminosity function and two-point correlation functions for star-forming galaxies at z~4, 5, 6 in the context of LCDM cosmology. Both statistics are the result of how star formation takes place in DM halos, and thus are used to constrain how UV light depends on halo properties such as mass. The two measures were taken from the GOODS data, thus ideal for joint analysis. The two physical quantities we explore are the SF duty cycle, and the range of L_UV that a halo of mass M can have (mean and variance). The former addresses the typical duration of SF activity in halos while the latter addresses the averaged SF history and regularity of gas inflow into these systems. We explore various physical models consistent with data, and find the following: 1) the typical duration of SF observed in the data is <0.4 Gyr (1 sig), 2) the inferred scaling law between L_UV and halo mass M from the observed slope of the LFs is roughly linear at all redshifts, and 3) L_UV for a fixed halo mass decreases with time, implying that the SF efficiency (after dust extinction) is higher at earlier times. We explore several physical scenarios relating star formation to halo mass, but find that these scenarios are indistinguishable due to the limited range of halo mass probed by our data. In order to discriminate between different scenarios, we discuss constraining the bright-faint galaxy cross-correlation functions and luminosity-dependence of galaxy bias. (Abridged)Comment: 24 pages, 16 figures: matches published version -- Astrophysical Journal 695 (2009) 368-39
    corecore