
IX. PROCESSING AND TRANSMISSION OF INFORMATION*

Prof. E. Arthurs Prof. J. M. Wozencraft T. S. Huang
Prof. P. Elias Dr. M. Eden F. Jelinek
Prof. R. M. Fano Dr. M. P. Schiitzenberger T. Kailath
Prof. J. B. Dennis D. C. Coll L. Lofgren
Prof. E. M. Hofstetter M. Corradetti B. Reiffen
Prof. D. A. Huffman H. A. Ernst L. G. Roberts
Prof. R. C. Jeffrey E. F. Ferretti J. L. Rosenfeld
Prof. H. Rogers, Jr. R. G. Gallager N. K. H. Tam
Prof. C. E. Shannon U. F. Gronemann W. L. Wells
Prof. W. M. Siebert F. C. Hennie III H. P. Zeiger

M. Horstein

A. A METHOD OF PLANAR PREDICTION FOR CODING PICTURES

The digital techniques that were illustrated in earlier reports (1, 2, 3,4) have been

used to determine upper bounds on the amount of information necessary for specifying

pictures (5).

The picture plane was divided into strips, each of which contained five scanning

lines (see Fig. IX-1). The three initial samples A, B, and C that were used for each

strip defined a plane from which the intensities of the adjacent sample points P 0 0'

P1, ' 2,0' 2,2' P 3 , 1' P4, 0 were predicted. For each of these points the difference

between the true and predicted values was then determined.

The true ordinates of Pl, ' P2, 2' P3, 1 obtained by correction of their corre-

sponding predicted values, were used to define another plane (see Fig. IX-2) that enabled

the prediction of the ordinates of the samples P0,1' P1,2' 2,3' P3,2' P4, 1, as well

as the calculation of the corresponding errors (differences between the true and the pre-

dicted values).

Such a procedure was continued until the whole strip was covered. From what has

been said above, it follows that only the ordinates of the initial points A, B, and C and

the prediction errors were necessary for specifying the picture in the strip.

The TX-0 computer was used to perform the operations required for planar predic-

tion and resynthesis of the pictures. A summary of the main operations executed by the

computer follows. For simplicity, the reflectance values will be indicated by the same

letters as those for the points at which they are measured; for example, the letter "A"

will indicate both sample A and its corresponding light intensity.

The average (A+C)/2 yielded the prediction P'2, of P2, 0 and, as Fig. IX-3 shows,

the knowledge of the differences (C-P2 0 ) and (B-P2, 0) allowed the prediction of the

points P4,0' P 0 ,O' P 2 , 2'
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The prediction of points P1, 1 and P3, 1 (Fig. IX-1) was made according to the

following expressions:

P1, 1 = (Po, 0+P -, 2)/2

P1 =(P' +P')
P3, 1 = (P, 0 +P2, 2)/2

Once the predicted values were known, the calculation of the errors was performed in

a very straightforward way. A new prediction plane, determined from the values

P' 1' PI 2' P' corrected, and with their corresponding errors, was then ready for

extending the decorrelation to other points of the strip.

Two other operations were executed by the computer: limitation of the predicted

values, and quantization of the errors. Limitation consists of clipping all of the nega-

tive values (a negative value of reflectance has no physical meaning) and positive values

larger than the quantum level 63 (64 equally spaced quantum levels are considered

enough for still picture representation). These values are replaced by 0 and 63 quantum

levels, respectively. Quantization of errors consists in limiting the number of levels

used to specify the mistakes in prediction. The range of possible errors is ± 63, and

therefore we need 125 levels for their complete specification (-0 and +0 are considered

coincident). If all these levels are allowed, it is obvious that the picture can be recon-

structed at the receiver end in the form in which it was presented to the transmitter.

% ,o P o A P ,o
B P I

P ,O P ,2

Fig. IX-1. Planar prediction procedure.
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Fig. IX-2. Planar prediction procedure.
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Planar prediction procedure. The prime characterizes
the predicted values: P2,0 = (A+C); P'0,0 = A - (C-P,0)

P = C + (C-Po); P' 2 =B + (B-P, 0 ).
42 0) 2 O12, 2 2,

111

Fig. IX-3.
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(a)

(b) (c)

Pictures reproduced by computer display. (a) Data processing
with criterion a. (b) Data processing with criterion b. (c) Data
processing with criterion c.

112

Fig. IX-4.
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(a)

(b) (C)

Fig. IX-5. Pictures reproduced by computer display. (a) Data processing
with criterion a. (b) Data processing with criterion b. (c) Data
processing with criterion c.

We called this criterion of remapping the data of a picture source "criterion a."

Two other quantization criteria were adopted: criterion b, 13 quantum levels

(0,+1,±4,±7,±20,±30,±40); and criterion c, 7 quantum levels (0,±4,±14,±29). With

the use of criteria b and c, distortions were introduced in the signal ensemble, with a

consequent degradation of the quality of the picture reproduction.

To judge the importance of these distortions, a display subroutine was incorpo-

rated into the processing program to provide a high-speed output of the resynthesized
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Table IX-1. Source-rate estimation.

Picture Criterion Upper Bound on Source Rate Quantization Level

(bits/ sample)

Fig. IX-4 a 2.66 125

Fig. IX-4 b 2.30 13

Fig. IX-4 c 1.95 7

Fig. IX-5 a 4.76 125

Fig. IX-5 b 3.43 13

Fig. IX-5 c 2. 30 7

picture (6). Three resyntheses of a picture are shown in Fig. IX-4. The quality of

reproduction with criterion b is definitely good, but that with criterion c suffers from

the presence of a limited number of quantization levels, mainly at points where the light

intensity surface of the picture presents many discontinuities and therefore is less

suitable for planar prediction. The results of the same processing criteria for another

picture are shown in Fig. IX-5, and similar remarks are valid. The estimated source

rates for the two pictures are listed in Table IX-1.
M. Corradetti
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B. AN INEQUALITY OF E. F. MOORE AND C. E. SHANNON

The following inequality on the "Boolian polynomial" h(p) associated with the Boolian

function u(a) of the n variates ai has been given by Moore and Shannon (1):
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h' (p) -1 -
(I). F = np (1-p)

u h(p)(1- h(1))

However, a more detailed version of the proof allows us to obtain instead:-1i -

(I)'. F -<A(p) p- (1-p)-

where A(p) is, roughly speaking, the average number of bits of information needed for

determining the value of u by a "binary decision program," as defined in the theory of

C. Y. Lee (2).

1. Definitions

Let u be a Boolian function of the n variates a.. We say that u is in normal form
1

if, for some a i ,

u = a.u' + a.u" (a: the negation of a)
1 1

where, recursively, u' and u" are in normal form and are independent of a i . It is

assumed that a function that is always equal to 0 (or to 1) is in normal form only if

it is written as a constant, that is, not written at all.

For instance, if u = ala2 + a 1 a 3 + a2 a 3 a 4 , a normal form u of u could be u =

a2 (a 1 +ala 3a 4) + a2(a3a).

To each normal form is associated a tree whose nodes correspond to the variates

a., and whose branches form a minimal set of prime implicants (3) of u and of u. In

our example, these prime implicants are:

For u: aZal; a2 ala 3a4; a2 a3 al.

For u: a 2 ala3 ; aZala3a4 ; a 2 a 3 ; a 2 a 3 al.

The tree is given in Fig. IX-6.

Obviously, for a given u there exist, in general, several different normal forms

and corresponding sets of prime implicants.

Let us now assume that the ai's are random independent variates with Pr(a i=1) = p =

1 - q for all i's. Under this hypothesis, for a given normal form the average length of

the prime implicants is a polynomial A(p) in p. It is easily seen that, for any p and

any normal form u , we have A(p) < n (=the number of variates). Indeed, if u is not a

a
2

Fig. IX-6. Tree associated with a normal form u

a3 a 0 of u = ala + ala3+ a 2a3 a 4
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modulo 2 sum of the i's ( i=ai or ai), this relation is always a strict inequality.

Under the same hypothesis, h(p) is defined as Pr(u=1).

2. Verification of the Inequality

Let us suppose that p = po or = p l , two fixed values, and consider W(Po, P1 ) the

average value of the logarithm of the likelihood ratio (Wald information) when p = po0
For the observation of a single a . , we have

Wa = Po log po/p 1 + qo log qo/q 1

Consequently, if the ai's are observed sequentially according to the tree describing

some normal form u , we have

W = A(Po) W
u

since, at every node, the probability that the corresponding a. has the value 1 is inde-1
pendent of the result of the previous observations.

Finally, for the observation of the sole value of u we have

h(Po )  1 - h(Po)W = h(p o ) log h(p) + (1-h(p)) log 1 h(p)

From the fact that, by construction, the knowledge of any prime implicant associated

with u gives the value of this function, we obtain the inequality

(I)". W < W = A(o a W nW
u

This ends the proof because, classically, the Fisher information, F(p), is equal to
-2

lim E- 2 W(p, p+E).
E-O

Here, as is well known,

F = p -1(l-p)-l and F = h'2 (p)(h(p)) (1-h(p))-1a U

and (I)' results from (I)" by inserting these values in (I)".
M. P. Schiitzenberger
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C. A CHARACTERISTIC PROPERTY OF CERTAIN POLYNOMIALS

OF E. F. MOORE AND C. E. SHANNON

Let L be the set of all Boolian functions, and L the subset of all Boolian functionsn n
not involving the negation operation, in the n variates a(i) (i=1, 2, ... , n). For any

SE L n , if the a(i) are random independent variates with Pr(a(i) = 1) = p, then Pr(4= 1)
is a polynomial (1), h(4) in p. We give an elementary necessary and sufficient condition

for the existence of at least a k E L for which h([i) = h(k). As is well known (2), theren
is a natural one-to-one correspondence between L n and the set of all simplicial com-

plexes with, at most, n vertices. Consequently, this condition is also a characteriza-

tion of the sequences of integers {a} that can be the number of j-simplexes contained

in a complex and its boundary. Because of this interpretation, it is unlikely that the

condition is new, but I have not been able to find any relevant reference to it.

With the help of this condition and of the corresponding extremal functions w(g) and
a3

EPaj , defined below, more elementary proofs can be given for Yamamoto's inequal-
n-j

ity (2) on the number of prime implicants of X E Ln and for the Moore-Shannon lower

bound (1) on the value of the derivative of h(X) (X E Ln).

1. Notations

i. Let Px be the set of the x first products of m of the variates a(i) when these
m

products are taken in lexicographic order with respect to the indices i. We write Pm)

instead of PX , when x has its maximal value and P = P . For any subset

P'cP, E P' denotes the Boolian function (belonging to Ln) which is the sum of all the

products, P, satisfying P < P' for some p' E P'. Conversely, for any k E Ln , PmX

is defined as the set of all the P E Pm that are such that P - X. Thus, X = EPX for

any X E L n . The set of all products, P E P', of the form p = P'a(i), with P' E P' and

with a(i) not a factor of p', is denoted by AP' [cf. Yamamoto (2)].

ii. To every pair of positive integers x and m there corresponds one and only one

strictly decreasing sequence of m' < m positive integers: yl', y2 ... Ym' with the

property that

x = + + ...... +
m m-1 m - m' +

Consequently, the function

Dm(X) = + + ...... +

m- m-2 m-m
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is well determined for all non-negative integers x and m if we define D (0) and D0 (x)

as zero.

For any x and m, x + D (x) > Dm+l(x) (with a strict inequality if and only if

x > m + I). For all x, D (x) + Dml(x') > Dm(x+x') if and only if x' < Dm(x).
niii. For any E Ln , we define the polynomial g(4) as the product by (l+t) of the

function obtained when (l+t)-1 is substituted for p in h(). The coefficient a. of t j in
J

g(4) is the number of monomials with n - j asserted, and j negated, variates a(i) in

the canonical expansion of i; when p E Ln, a. is also the number of elements in P n-j 4.

2. Statement of the Condition

For any p EL n,, a necessary and sufficient condition that there exist a X E L for
n nwhich g(L) g ( ao+alt+... +amt nm) is that

j-1 D (a), for all j >0

3. Verification

The condition is sufficient, since, for any polynomial g(p.) that fulfills it, we can

define a function w(g) E Ln as

W(g) = ZE Pa

and w(g) satisfies g(w(g)) = g because AP x = P , when x' = D (x).m m+1 n-m
aj

It can be remarked that the functions ZP are the only functions in L for which
n-j n

a j_ 1 = D ,(a ,) for all j' < j.

The condition is necessary. The first inequality is obvious. With respect to the

proof of the second inequality it is enough to consider a truncated function X = EP n-j

with aj prime implicants. Let a and a' be any two a(i)'s. Then, X can be written as

aa'A + a(B+C) + a'(B+C') + D, where A, B, C, C', and D are sums of products not

involving a and a', and where, furthermore, P nj+2C and P nj+2C' are disjoint sets.

It is readily checked that the function k' = aa'A + a(B+C+C') + a'(B) + D is such that

the set P .k' has a. elements and that the set P nj+A' has, at most, as many
n-J ] n-j+ 1

elements as P j+AX. By taking successively a = a(i) and a' = a(i+l) for all i, wen-j+I a.
can reduce the function X to a function EP. and the result is proved.

M. P. Schutzenberger
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D. REDUNDANCY BOUNDS FOR w-ERROR CORRECTING CONTACT NETWORKS

FOR A BOOLIAN FUNCTION

1. Introduction

In a well-known paper, von Neumann (11) shows that it is possible to design a com-

binational network for an arbitrarily accurate computation of a Boolian function, even

though each component (Sheffer stroke) of the network has a certain probability of error.

Moore and Shannon (6) have shown the same result for relay networks and have, more-

over, found that this result is true even for arbitrarily poor relays. In both treatments

the computational structure of the net, that is, the structure of the net in the error-free

case, is maintained, and redundancy is applied on the components of the net.

Moore and Shannon (6) suggested that it may be more efficient to redesign the whole

network to get redundancy than to replace each relay by an individual network. Espe-

cially with Shannon's block-coding method for arbitrarily reliable communication over

a noisy channel (9) in mind, some methods of combined correction (3) appear promising

for an efficient design of redundancy networks.

The purpose of this paper is to investigate this question for contact networks. As

a measure of accuracy we shall take the largest weight, w, of the component errors

for which the output will be corrected. A w-error correcting network corrects all errors

of weights less than or equal to w. We shall assume that the probability of error in a

branch (relay-contact) is independent of the state of the branch.

We find the following bounds on the minimum number of branches, n, (relay-

contacts) in a w-error correcting redundancy network for a Boolian function B:

m(w+1)2 4 n < M(w+1)2 (1)

where m is the number of nonredundant literals of B, and M is the number of contacts

in a minimum branch network for B (without any specified error-correcting capability).

If B has a nonredundant network (4, 5), m = M, and the two bounds coincide. However,

when a nonredundant network for B does not exist, M is larger than m in order to

meet the realizability conditions (see references 4 and 5). In the redundancy case the

corresponding realizability conditions become less restrictive as w is increased, and

so n will be close to the lower bound of Eq. 1.

Elias (1) has pointed out that, in a loose sense, time and number of components are

interchangeable. If twice as many components are used in order to make a computer

operate more reliably at the same rate, we could use the components to build two com-

puters and compute twice as fast at the old level of reliability. In this sense, an increase

of the number of components for obtaining greater reliability at the same rate reduces

the rate of computation per component. Hence it is reasonable to consider the quantity
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R =m (2)n
-l

as a measure of the rate of computation per component. Evidently, R-1 is a relative

measure of the redundancy. From Eq. 1, for the maximum rate of computation per

component for w-error correction, we obtain

max (w+) - 2  (3)

Thus for arbitrarily high accuracy in the computation of any Boolian function, R ismax
zero; that is, the capacity of computation is zero.

This may, at first, seem surprising when compared with the Shannon capacity theo-

rem (9) for communication over a noisy channel. However, in order to communicate

with an arbitrarily high reliability at nonzero rate, we must use an arbitrarily large

encoder and decoder, which must operate, besides, under ideal (error-free) conditions.

But, in the computation case we want to consider the computer (which eventually will

contain separate parts as encoders and decoders) as an integrated system with a uniform

application of noise to all components (at least to all components of the same kind). With

this in mind, it is clear that we must pay with additional redundancy when we turn from

the communication situation to the computation situation.

Elias (1) and Peterson (7) use a communication-like model with error-free encoders

and decoders to prove negative results concerning computation.

In section 6 we shall see that if we do not restrict the relay network to be a contact

network but allow a subnetwork of contact type to feed the relay coils of another contact

subnetwork, then the lower bound of Eq. 1 is no longer valid. For instance, for single-

error correction (w=l) we can, if B has a nonredundant network, approach a triplica-

tion of the number of components for very large m values instead of the quadrupling

necessary in the case of contact networks.

2. Redundancy Possibilities in Contact Networks

Let us consider a Boolian function B(a, a', b, . .. ) of the literals

(-*=) a, a', b, ...

We may think of the literals as a binary number y with as many positions as there are

literals of B. Next we want to introduce a redundant number of branches

(y=) a , a .. ' a a'1,. .. , bo b l

In the error-free case these redundancy branches are related to the components of y

as follows: a. = a, a! = a', b. = b, .... for all i.
1As in coding 1 1

As in coding theory, we shall represent an error with a binary number e with as
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many positions as there are positions in y. If there is an error in the branch that cor-
th th

responds to the i redundancy literal, e has a 1 in the i position. Otherwise it has

a zero. Hence

e = f + e (mod 2) (4)

represents a state, corresponding to the error e of the redundancy network. In this

state the network generates the value

B (ye) (5)

We are primarily interested in the synthesis of networks that are insensitive to all

e-errors up to a certain weight, w. We denote by E the set of e-numbers of weight

less than or equal to w. Thus we require that

B(y-) = B

(6)
eEE

w

Because of the errors in ye we cannot require that at shall always be the negation of a..1 1
Therefore we use the symbol prime to indicate the negation of the letters (with no index)

of B. We shall use the notation X. for the negation of the literal X. of the B-function.
1 1

Concerning the minimum amount of redundancy that is necessary for the specifica-

tion according to Eq. 6, we at once obtain a necessary condition. The set of numbers

ye for which B = 1 and the set for which B = 0 must be disjoint for e E E. This

condition is related to the Hamming bounds (2) of coding theory. As we know, these

bounds are in general not sufficient for the existence of an error-correcting code. There

are additional construction conditions that must be fulfilled. This is true here, too,

regarding the existence of a B-function satisfying Eq. 6. For a Boolian function B of

only one variable there is no further requirement. But for a function B of more than

one variable there is a further restriction that depends upon the redundancy possibility

that we have at our disposal (compare section 5). In the group codes (10) we have the

composition addition mod 2 at our disposal when we are forming the check-position con-

tent. For networks we can only duplicate the a -value to al, a , ... , and we may also

specify that we shall have a'-branches at our disposal. This is true because the network

is built only of a i , a', b., ... branches; and other compositions, such as addition mod 2,
11

multiplication (intersection, conjunction), and addition (union, disjunction), must be

reflected in the structure of the B-network.

The condition of Eq. 6 is only a partial specification of a truth table for B. It is

not a complete specification, because for errors e Ew we can choose the values of

B (y ) as we wish. We shall take advantage of this freedom in order to give B a form

that contains a small number of short prime implicants (8). In this connection, B must
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fulfill three further conditions. Each of these is necessary, and all of them together are

sufficient for the existence of a network with only one branch for each of the redundancy

literals. The first will be given in Theorem 1. The other two, the c-criterion and the
subrearrangement theorem, have been derived in the theory of nonredundant Boolian
branch networks (4, 5).

3. A Condition on the Truth Table of a B-Function

Because of the appearance of at least single errors in the y-numbers we must treat
any pair of redundancy literals ai, ai as two independent variables. When constructing

a B-function from the partial truth-table specification according to Eq. 6 we must there-
fore require that the B-function shall not contain any negations (a) , (a), (bi), .. . of the
literals a., a!, b ..... .For, otherwise, we would need more redundancy literals than
we assumed at the beginning. In Theorem 1 we shall use this necessary condition for
the formulation of a condition on the truth table of a B-function.

For Theorem 1 we shall use the following notations. Instead of the notations

a o , a , a o , a'1 ... , bc, bl' ... for the independent redundancy variables, we shall
use X 1 , X2, X 3 ... Xn. We denote by yi a variable combination number. There are
n n

2 such numbers, of which some belong to E . The index i varies between 0 and 2
n - i

and here it is not related to the error e. Those yi-numbers for which B(X, X 2 ... ) = i,

or, for brevity, B(Yi) = 1, are called the implicant numbers. One number, yi, is said to

cover another number, y j, if all of the 1-positions in yj are also 1-positions in yi. An

implicant number that does not cover any other implicant number is called a prime

implicant number. A minimal polynomial is an intersection of all n X.-variables so thatI
the X -letters that correspond to l's in the corresponding implicant number are affirmed,
and those that correspond to O's are negated. An a-intersection is an intersection of
only those (affirmed) Xi-letters that correspond to l's in the prime implicant number.

THEOREM 1: A condition on a truth table (selected according to Eq. 6) that is nec-
essary and sufficient for the truth table to specify a B-function (which does not contain
negated variables Xi) is that all variable combination numbers that cover a prime impli-
cant number are implicant numbers. B may be specified as a union of a-intersections

only.

4. Networks for a Function of a Single Variable

We want to investigate the least amount of redundancy that is required for a

B-network, insensitive to E w-errors, for the identity operation B(a) = a. The B-network

contains the redundancy branches a , a, . . . . . a r . Here there are two y-numbers

(compare section 2) which we denote a and P.

a = 111...11 (7)
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p= 000...00 (8)

We shall also use the set notations:

Sw,Q = {aele E Ew} (9)

Sw, = {pe e Ew} (10)

Sw =Yi Yi Sw,C' Yi 4 Sw, p} (11)

where ae and pe are defined according to Eq. 4, and yi is a variable combination num-

ber. From Eq. 6 we obtain the requirements:

B(yi) = 1

(12)
Yi E Sw,a

B(Yi) = 0

(13)

Yi E Sw,

If a prime implicant number yi E Sw , we must specify, according to Theorem 1, that

all covering yi-numbers are implicant numbers. The remaining condition on the impli-

cant numbers is that the selected set of prime implicant numbers shall fulfill both the

c-criterion and the subrearrangement theorem (4, 5). If there is a set of prime impli-

cant numbers that fulfills these requirements, the amount of redundancy, r, is suf-

ficient for the existence of an E -error correcting network. If there is no such set ofw
prime implicant numbers, the amount of redundancy is too small for the existence of

an E w-error correcting network. In investigating the smallest amount of redundancy,

we therefore start with the minimum amount for which the sets S and S are dis-w,a w,P
joint. This minimum amount is obtained directly from the Hamming bounds (2) for an

error-correcting code of one information position and r check positions. We have

w= 1 (r+1) >3 (14)

w = 2 (r+l) > 5 (15)

w (r+1) > 2w + 1 (16)

In this case with only one information position there is only one possibility for

the formation of the check position content. This is that each check digit equals

the information digit, which is in agreement with the redundancy possibility in the

network case. For the redundancy selected according to the Hamming bounds (Eq. 16)

the set Sw is empty. Hence it is necessary that the set of y.i-numbers of weight

n - w = r + 1 - w = w + 1 be prime implicant numbers. This is the lowest bound
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on the prime implicant weight:

wp. i. > w + 1 (17)

Let us consider the following set of yi-numbers of weight n - w:

T a a ... a a a a a ... ao 1 w-2 w- w aw+ aw+2 r

1 0 0 0 0 1 1 1 1 Y1
1 0 0 0 1 0 1 1 1 Y2
1 0 0 0 1 1 0 1 1 Y3

1 0 0 0 0 0 0 1 1 Y4

The corresponding three LT-elements (compare refs. 4 and 5) generate the coset

element corresponding to y4 , that is, an element of weight n - w - 2. Hence it must

belong to Sw, We then conclude that for the redundancy corresponding to the

Hamming bounds there exist no redundancy networks. In any case, Eq. 17 is valid.

It is equivalent with the statement that the shortest path between the terminal vertices

of the redundancy 'network must contain w + 1 branches. This is obvious, for if there

were a path of only w-branches the network could not be insensitive to all e -errors.
w

If B = 0, that is, a = 0, and there are no errors, all branches are in state 0. Then

the e -error that has all its components in the branches of the w-path will give

B = 1.

If, on the other hand, we consider the error-free state corresponding to the impli-

cation number a, we must similarly require that the coset c (compare refs. 4 and 5)

will contain at least w + 1 elements that are independent in such a way that in any posi-

tion there is only one 1 in this set of w + 1 elements, except of course for the T-

column. Having selected a single path, we must always find w additional paths in the

network that are independent in this same way. For, otherwise, we can always find an

e w-error that breaks all paths; that is, B = 0 instead of 1.

We now immediately obtain the lower bound on the number of branches in an ew -

error insensitive network:

n > (w+1) 2  (18)

for the minimum weight of a prime implicant number is w + 1, and there must be at

least w + 1 prime implicant numbers with all their l's in different positions. For n's

fulfilling Eq. 18 as an equality there is always at least one ew -error insensitive net-

work. The pure series-parallel network with w + 1 independent paths, each containing

w + 1 branches, is one.
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5. Networks for a Function of Several Variables

Let us consider a Boolian function B(X 1 , X 2 . .. X ), where X i stands for nonredun-

dant literals (not letters). We want to protect each literal with extra literal branches.

There are Zm y-numbers, which we denote a, , . . .. . Let us consider two y-numbers

that differ only in the X 1 -redundancy positions:

X X 2 ... X

a = i i ... 1 .........

S = 0 ... 0 .........

There must be such a pair for which B(a) * B(P). For, otherwise, B(a) = B(P) for any

content in the redundancy positions in the common part of a and p. Then the literal X

would be redundant for the specification of B, which is against our assumptions. This
1 1

is true also if X= a and X a , for the two literals a and a must be treated here as

independent.

If by al and p1 we denote only the positions of a and P that correspond to the

Xl-redundancy variables, we must accordingly require that the two sets Sw, al and

S w , defined according to Eqs. 9 and 10, shall be disjoint. The same requirement

must evidently be made for each of the redundancy sets that corresponds to the other

literals, X.. It is evident that B(a) = 1, B(P) = 0, for if B(P) = 1, we must also require,
1

according to Theorem 1, that B(a) = 1.

We conclude, as we did in section 4, that the minimum weight in the redundancy

positions corresponding to Xi of an implicant number is w + 1. Also, there must be at

least w + 1 paths containing w + 1 redundancy branches corresponding to each of the

X. (i#j) literals that have a 1 in the a-number. There must be no common X -redundancy
2 1

branch in these w + 1 paths. Hence there must be at least (w+1) redundancy elements

for each of the X.-literals. In this case of a function of several variables we cannot, as
1

we could in section 4, in general satisfy the realizability requirements (the c-criterion

and the subrearrangement theorem of references 4 and 5) with this necessary amount of

m(w+1)2 branches. If, however, B has a nonredundant network, then we know that the

realizability conditions on B must also be satisfied for this necessary amount of redun-

dancy. An individual protection of each branch of the B-network with (w+l)2 branches

gives one B-network. If B has no nonredundant network but a minimum branch network

of M branches, evidently a B-network of M(w+l) branches can be constructed. This

number can therefore be taken as an upper bound on the minimum number of redundancy

branches, n. Hence we have proved Theorem 2.

THEOREM 2: Lower and upper bounds for the minimum number of branches, n, in a

w-error correcting contact network for the generation of B are m(w+l) 2 n < M(w+l) 2
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where m is the number of nonredundant literals of B, and MI is the minimum number

of branches in a B-generating contact network.

6. General Relay Circuits

If we do not main' -in the restriction that the redundancy network shall be of contact

type but, instead, allow one subnetwork of contact type to feed some of the coils in the

relays of another subnetwork, then we can go beyond the lower bound of Theorem 2.

This may be clear from the following example.

We want to design a single-error correcting network for a function B which has a

nonredundant contact network of m (>14) branches. Let us make three separate copies

of the nonredundant B-network. Let two of these each feed 5 parallel connected relay

coils. The third copy shall feed 4 parallel connected coils. Out of these thirteen relay

contacts we can realize a single-error correcting contact network for the majority func-

tion of three variables. Hence we can construct with 3m + 14 relays a single-error

correcting network for B. If m is larger than 14 we have gone beyond the lower bound

of Theorem 2. For very large values of m, the additional redundancy for single-error

correction approaches a triplication (instead of a quadrupling as for contact networks).

For the realization of the single-error correcting contact network for the majority

function of three variables, the two bounds according to Theorem 2 are 12 and 20,

respectively. The actual minimum number 14 is close to the lower bound. The syn-

thesis and proof of minimality for the 14-contact network is based on the methods of

references 4 and 5.

Stimulating discussions on the subject with Professor P. Elias, of the Massachusetts

Institute of Technology, are gratefully acknowledged. The author is indebted to

Dr. E. Moore and Dr. D. Hagelbarger of the Bell Telephone Laboratories, Inc., for a

generous supply of valuable counterexamples to conjectures. Part of this work was done

at the Swedish Research Institute of National Defense.
L. Lofgren
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E. DISTANCE BETWEEN BINARY SEQUENCES CONTAINING ERASURES

The distance between an input and an output sequence of a discrete memoryless

channel has been defined for the binary symmetric channel(1) and the p-nary symmetric

channel (2). We shall define a metric, or distance, which applies to the input and output

sequences of a binary erasure channel that has a finite probability of crossovers.

The binary symmetric channel is a discrete memoryless channel that accepts binary

digits at its input and reproduces them at its output, in such a way that the probability

that a digit is reproduced incorrectly is p. The channel operates upon successive digits

independently of its operation on past digits. The noise is of the same nature as the

input and output; that is, a binary output sequence of length n may be defined as the

term-by-term mod 2 sum of a binary input sequence and a binary noise sequence that

has I's in those places in which errors have occurred and O's elsewhere.

Consider a list decoding procedure for the binary symmetric channel. Let there be

M message sequences of length n; then there are N = 2 n possible received sequences.

The optimum method of decoding consists of forming the term-by-term mod 2 sum of

the received sequence and each of the message sequences and thereby generating a set

of possible noise sequences. The l's in the noise sequences represent those places in

which the received sequence differs from the message sequences. The received sequence

is decoded as that message sequence from which it differs in the least number of places.

This is an optimum procedure in the sense that the noise sequence containing the least

number of errors is the noise sequence most likely to have occurred as a result of the

monotonic relation between the number of errors in a noise sequence and its probability

of occurrence.

The number of places in which the message sequence and the output sequence differ

(the number of 1's in the noise sequence) is the Hamming distance between them. Thus

the optimum decoding procedure amounts to choosing the message sequence that is
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"closest" to the received sequence.

The probability of a noise sequence containing x errors is

x n-x 1
P q p<2

Let us consider an input sequence disturbed by two noise sequences: n 1 containing xl

errors, and n2 containing x2 errors. It would seem logical to require that if

Pr(nl) > Pr(n2), then D(n 1 ) < D(n2), where D(n) is the distance associated with n. That is,

x1 n-x2 x 2 n-x2
P q >P q

or

x logP > x 2 log p

1  q 2 q

That is,

x 1 < x 2

Thus, we see that distance can be equated directly to the number of errors.

Let us now consider an analogous procedure for a binary symmetric erasure channel

with crossovers. This is a channel that accepts binary digits and produces at its output

an erasure with probability p , a crossover with probability p 2 , or the correct digit with

probability p 3 = 1 - p 1 - P 2. In this channel the noise sequences are of a different nature

from the input sequences, but a set of noise sequences resulting from the comparison of

a received sequence with each of the message sequences can be found by using the fol-

lowing algebraic procedure. Let the input sequences consist of +1's and -1's; and the

output sequences consist of +1's, -l's, and O's. Let the occurrence of a 0 in the noise

sequence represent an erasure and the occurrence of a -1 represent a crossover. Then

an output sequence y will be related to an input sequence x as y = x 0 n, where n is

the noise sequence, and D represents term-by-term algebraic multiplication. Since

x o x = 1 = (1111... 1); then n = x o y.

We now have the set of noise sequences, but it is not obvious which one represents

the closest message sequence. Let us again require that if the probability of a noise

sequence n 1 (containing x I erasures and yl crossovers) is greater than the probability

of a noise sequence n 2 (containing x 2 erasures and y 2 crossovers) then the distance of

n 1 (from the zero-error sequence) must be less than the distance of n 2 . Then distance

and, most likely, error sequence would be related as in the one-dimensional binary case.

Now, Pr(n1 ) > Pr(n2); that is,

X1 Y 1 n-xl-y 1  x2 y 2 n-x 2 -Y 2
Pl P2 P3 1P P2 P 3

or
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l 2 P 1  P2
Slog +y lo > x 2 log loglg 3 +ylogP3 y P3

or

x 1 
+ ay 1 

< x2 + ay 2  for P2 
< P < p 3

where

P 2log
P3

a= >1
p1log
P3

Therefore distance may be defined as the weighted sum:

number of erasures + (number of crossovers a
in noise sequence in noise sequence

We may now associate with each message sequence in our list decoding the prob-

ability of its having produced the received sequence by computing the distance between

the received sequence and the message sequences.

This concept of distance may, of course, be extended to any discrete channel having

an arbitrary number of inputs and outputs.
D. C. Coil

F. GATING CIRCUITRY FOR ANALOG-DIGITAL CONVERSION

In this Laboratory a DATRAC (Epsco, Inc., trade name) reversible analog-digital

converter is employed in a digital facsimile system. The DATRAC, which produces a

ten-bit digitalization (exclusive of the sign bit) is used in conjunction with the IBM 704

digital computer, whose magnetic tape equipment has a seven-bit (lateral) format.

Previous data-handling equipment permitted the use of only six of the ten bits available

from the DATRAC.

We constructed a sequential gate selector that sequentially gates the ten bits onto

magnetic tape in the IBM 704 format and thus allows full use of the DATRAC's capabil-

ities. Compatible circuitry, known as the resynthesis gate, was also constructed to

permit the DATRAC to recover the original analog variable in sampled form. Although

the sequential gate selector and the resynthesis gate are both functioning as desired, the

over-all facsimile system is not yet operational. The system's tape equipment or

DATRAC seems to be at fault, but further testing will be required to locate the actual

source of difficulty.

The author's Master of Science thesis, "Gating Circuitry for Analog-Digital Con-

version" (Department of Electrical Engineering, M.I. T., September 1959), describes

the sequential gate selector and the resynthesis gate and explains the operation of the

facsimile system and the DATRAC.
N. K. H. Tam
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G. DESIGN AND EVALUATION OF A LITERATURE RETRIEVAL SCHEME

[This report is based on an abstract of the author's thesis, "Design and Evaluation

of a Literature Retrieval Scheme," which was submitted to the Department of Electrical

Engineering, M. I. T., in partial fulfillment of the requirements for the degree of Master

of Science, June 1959.]

Electrical engineers have become increasingly aware of the problem of information

retrieval because the conception of appropriate machines and coding schemes is part of

their field. One of the foremost problems is the library search problem. Today's

libraries are so large that is has become more and more difficult to find information

efficiently and successfully. A literature retrieval scheme remedies the situation by

presenting a small set of documents, rather than the whole collection, from which to

choose.

In this study we show that all such information retrieval systems have to make some

use of human intelligence. Many schemes have been developed for smaller libraries -

libraries with 104-105 documents. They use little, but expensive, information. Cost

prohibits the use of similar systems for large libraries. We need a scheme that will

make use of machine processes and that is adapted to them. This system should use

existing information that can be furnished by human intelligence, in view of the fact that

the collection of such information just for retrieval purposes is too expensive. Use

should be made of inexpensive "surplus" information.

The scheme that we propose works along the lines proposed by V. Bush. A machine

presents us with documents, and our choice of the ones that seem to be pertinent to our

problem directs the machine to point out other pertinent information. The contribution

of human intelligence comes in through the use of the reference lists contained in the

documents. These references define a relation network among the documents, and it is
along the branches of this network that the machine is guided in its selections. In addi-

tion, the documents are grouped according to their importance - their importance being

evaluated by the number of references branching out from a document. The machine

proceeds to lead us from level to level, beginning at the top, always determining the next

set of possibly pertinent documents by topological procedures in the relation network.

After each such step of the machine the human operator has to decide which ones are

important to him, and then the machine starts again from this point.

Two hand-imitations of such machine processes were made to evaluate the system

and determine the main difficulties. The difficulties are the need for a reading machine

for the automatic input of the mass of information contained in the reference lists, and

a program that brings all of the different forms of references into a standard form.

The proof of a retrieval scheme is its practical behavior. In the evaluation of any

system two figures are of interest: the percentage of relevant documents that we were
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not made aware of during the retrieval operations (retrieval loss) and the percentage of

relevant documents among all the documents we considered during the operation (effi-

ciency). The results of an experiment that used Stumper's Bibliography on Information

Theory, Part I, as the model library, are the following: The two evaluation figures are

not independent. If one wants to get all of the pertinent information contained in the

collection by means of this procedure, he has to accept a lower efficiency than if he

tolerates some loss. The actual figures are the following: less than 5 per cent retrieval

loss with an efficiency of 5-15 per cent; less than 30 per cent retrieval loss with an

efficiency of 20-30 per cent.

We found no procedures for improving these figures when no more than the informa-

tion contained in the relation network was used. It seems that our retrieval grammar

is not precise enough.

However, for retrieval applications in which these results are sufficient, this very

simple scheme, adapted to the use of machine methods as much as possible might be

practical, once the two mentioned difficulties are solved.

H. A. Ernst
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