330 research outputs found

    Reconfigurable interconnects in DSM systems: a focus on context switch behavior

    Get PDF
    Recent advances in the development of reconfigurable optical interconnect technologies allow for the fabrication of low cost and run-time adaptable interconnects in large distributed shared-memory (DSM) multiprocessor machines. This can allow the use of adaptable interconnection networks that alleviate the huge bottleneck present due to the gap between the processing speed and the memory access time over the network. In this paper we have studied the scheduling of tasks by the kernel of the operating system (OS) and its influence on communication between the processing nodes of the system, focusing on the traffic generated just after a context switch. We aim to use these results as a basis to propose a potential reconfiguration of the network that could provide a significant speedup

    8x14Gb/s ring WDM modulator array with integrated tungsten heaters and Ge monitor photodetectors

    Get PDF
    An 8x14Gb/s wavelength-division multiplexed Si ring modulator array is presented with uniform channel performance. Tungsten heaters and Ge monitor photodetectors at the ring modulator drop ports are co-integrated to track and control the modulation quality

    Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays

    Get PDF
    We demonstrate the first chip-to-chip interconnect utilizing a densely integrated plasmonic Mach-Zehnder modulator array operating at 3 x 10 Gbit/s. A multicore fiber provides a compact optical interface, while the receiver consists of germanium photodetectors

    An experimental realisation of steady spanwise forcing for turbulent drag reduction

    Full text link
    We present an experimental realisation of spatial spanwise forcing in a turbulent boundary layer flow, aimed at reducing the frictional drag. The forcing is achieved by a series of spanwise running belts, running in alternating spanwise direction, thereby generating a steady spatial square-wave forcing. Stereoscopic particle image velocimetry is used to investigate the impact of actuation on the flow in terms of turbulence statistics, performance characteristics, and spanwise velocity profiles, for a waveform of λx+=401\lambda_x^+ = 401. An extension of the classical spatial Stokes layer theory is proposed based on the linear superposition of Fourier modes to describe the non-sinusoidal boundary condition. The experimentally obtained spanwise profiles show good agreement with the extended theoretical model. In line with reported numerical studies, we confirm that a significant flow control effect can be realised with this type of forcing. The results reveal a maximum drag reduction of 26% and a maximum net power savings of 8%. In view of the limited spatial extent of the actuation surface in the current setup, the drag reduction is expected to increase further as a result of its streamwise transient. The second-order turbulence statistics are attenuated up to a wall-normal height of y+100y^+ \approx 100, with a maximum streamwise stress reduction of 44% and a reduction of integral turbulence kinetic energy production of 39%

    Optical interconnect solution with plasmonic modulator and Ge photodetector array

    Get PDF
    We report on an optical chip-to-chip interconnect solution, thereby demonstrating plasmonics as a solution for ultra-dense, high-speed short-reach communications. The interconnect comprises a densely integrated plasmonic Mach-Zehnder modulator array that is packaged with standard driving electronics. On the receiver side, a germanium photodetector array is integrated with trans-impedance amplifiers. A multicore fiber provides a compact optical interface to the array. We demonstrate 4 × 20 Gb/s on-off keying signaling with direct detection.ISSN:1041-1135ISSN:1941-017

    Medial gastrocnemius volume and echo-intensity after botulinum neurotoxin A interventions in children with spastic cerebral palsy.

    Get PDF
    AIM: This cross-sectional investigation evaluated whether recurrent botulinum neurotoxin A (BoNT-A) interventions to the medial gastrocnemius have an influence on muscle morphology, beyond Gross Motor Function Classification System (GMFCS) level. METHOD: A cohort of typically developing children (n=67; 43 males, 24 females; median age 9y 11mo [range 7y 10mo-11y 6mo]), a cohort of children with spastic cerebral palsy (CP) naive to BoNT-A interventions (No-BoNT-A; n=19; 10 males, nine females; median age 9y 3mo [range 8y 5mo-10y 10mo]) and a cohort of children with spastic CP with a minimum of three recurrent BoNT-A interventions to the medial gastrocnemius (BoNT-A; n=19; 13 males, six females; median age 9y 8mo [range 7y 3mo-10y 7mo]) were recruited. Three-dimensional freehand ultrasound was used to estimate medial gastrocnemius volume normalized to body mass and echo-intensity. RESULTS: Normalized medial gastrocnemius volume and echo-intensity significantly differed between the two spastic CP cohorts (p≤0.05), with the BoNT-A cohort having larger alterations. Associations between normalized medial gastrocnemius volume and echo-intensity were highest in the No-BoNT-A cohort, followed by the BoNT-A cohort. Multiple regression analyses revealed that both GMFCS level and BoNT-A intervention history were significantly associated with smaller normalized medial gastrocnemius volume and higher echo-intensity. INTERPRETATION: Recurrent BoNT-A interventions may induce alterations to medial gastrocnemius volume and echo-intensity beyond the natural history of the spastic CP pathology. WHAT THIS PAPER ADDS: In spastic cerebral palsy, medial gastrocnemius volumes are smaller and echo-intensities higher compared with typical development. Alterations after botulinum neurotoxin A intervention (BoNT-A) are larger than in no BoNT-A intervention. Gross Motor Function Classification System level and BoNT-A history significantly associate with medial gastrocnemius and echo-intensity alterations
    corecore