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Abstract. Recent advances in the development of reconfigurable optical 

interconnect technologies allow for the fabrication of low cost and run-time 

adaptable interconnects in large distributed shared-memory (DSM) 

multiprocessor machines. This can allow the use of adaptable interconnection 

networks that alleviate the huge bottleneck present due to the gap between the 

processing speed and the memory access time over the network. In this paper 

we have studied the scheduling of tasks by the kernel of the operating system 

(OS) and its influence on communication between the processing nodes of the 

system, focusing on the traffic generated just after a context switch. We aim to 

use these results as a basis to propose a potential reconfiguration of the 

network that could provide a significant speedup. 

Keywords. Reconfiguration, interconnection network, distributed shared 

memory, multiprocessors, context switch. 

 

 

1. Introduction 
In DSM multiprocessor machines all the memory of the system is physically 

distributed among its nodes, and they can access data located in the memory of other 

nodes in a software transparent way. The interconnection network is thus part of the 

memory hierarchy and therefore high network latencies cause a significant 

performance bottleneck in program execution [1]. This situation will become worse in 

the future, as a result of increasing hardware performance, the rapid growth in 

instruction level parallelism and the use of multiple process contexts [2]. 

Reconfigurability in this aspect will allow the system to rearrange the interprocessor 

communications network to form topologies that are best suited for the particular 

computing task at hand, allowing for a network topology that closely matches the 

traffic patterns exhibited by the current application [3].  

Optics is a great candidate to introduce fast interconnection networks in the 

architecture of multiprocessor systems [4]. By using optical interconnects at the scale 

of the link lengths found in multiprocessor machines, an increase in connectivity and 

higher communication bandwidths can be achieved, as well as the elimination of 

frequency dependent cross-talk with galvanic isolation. One important aspect that has 

not been yet exploited so far is their inherent ability to switch the light paths easily in 

a data transparent way, paving the way towards adaptable network topologies. 
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It is necessary to determine the architectural limitations specifically imposed by 

interconnection networks and propose an efficient way to apply them to 

multiprocessor machines. For the leading low-cost solutions, a designer must 

overcome the fact that switching speed and connectivity do not come for granted, so it 

is necessary to find communication and reconfiguration schemes that not only 

overpass these limitations but try to use them at their advantage. Communication 

patterns lasting long enough compared to optical switching times must be found so 

that we can allow for a slow reconfiguration rate of the links in the topology. The 

frequent context switches that happen in modern operating systems are the perfect 

event to be used as a trigger, to establish a regular and profitable reconfiguration on 

the interprocessor communication network. The peak bandwidth and congestion 

expected in those intervals will be the key element here. 

It is the goal of this work to investigate the communication patterns found on a 

DSM interprocessor network related to the task scheduling, focusing on the context 

switches. We will first give an introduction to reconfigurability in interconnection 

networks. Later on, we will enter in detail on the context switch behavior of the 

operating system and the mechanisms to use it as a trigger for adapting the network to 

certain communication patterns. Finally, we will present the results obtained by 

running full system simulations of real parallel benchmarks and we will discuss them 

proposing a possible optical implementation of the system. 

 

2. Reconfiguration in Interprocessor Networks 
Through reconfiguration the system can adapt the interconnection network to better fit 

the real-time communication needs, which depend upon the application that is 

running in the machine. This will alleviate the large bottleneck affecting the current 

communication networks and moreover can serve as a backup network in case there is 

a failure in any of the components of the system.  

The proposed interconnection network architecture for the DSM system consists 

of a fixed base network connecting all the nodes (processors and local memories), 

arranged in a torus topology. In addition, a certain number of freely reconfigurable 

point-to-point links will be provided (see Fig. 1) between nodes that are expected to 

have a large communication load. These new links can be used as direct shortcut 

connections to route the traffic between processor node pairs on the network. This 

will happen for a certain interval of time, and then the links will be available until a 

certain interval of time. Afterwards, the extra links will be reassigned according to the 

new congestion measurements.  

 

 
Fig. 1. Torus topology of the 16-node base interconnection network and reconfigurable optical 

layer with some assigned extra links. 



 

This setup, compared to the case where all links in the network are available to 

be used for the topology reconfiguration, has a number of advantages because the 

base network will always be available. It is therefore impossible to disconnect parts of 

the network, greatly reducing the complexity in the reconfiguration algorithms. 

However, this reconfigurability can offer advantages to a system considering some 

requirements are met beforehand. 

In this study, we focus our architectural study primarily on the occurrence of 

events to act as trigger conditions that can lead to a reconfiguration. These events will 

be the environment switches happening on the OS, expected to impose higher 

demands on the interconnection network during short intervals of time. The right 

placement of the extra links in the topology and the implementation of such a network 

are questions already treated in our previous works [5][6]. 

 

3. Context Switching in the Operating System 
During normal execution, only one process per processor can be executed. After a 

certain time interval, this processor can switch to another process; this procedure is 

known as context switch. [7]. The OS used in this work, Solaris 9, has a good support 

for multiprocessor systems and it is based on a process-thread model where processes 

are divided in threads in order to be managed by the scheduler [8].  

 

3.1 Scheduling of Processes and Threads, and Temporal Patterns 

The OS uses several structures to define each process and thread, like indexed tables 

or arrays, describing every aspect involved in the process. After a processor has 

finished its allocated time-slot, a scheduler interrupts its execution, write all relevant 

processor state information to the memory space pointed by a context register and will 

pass execution to a next process. 

The execution of different tasks is controlled by the scheduler, enabling 

processes and threads to work on one system by switching constantly between them 

on a short time interval. Previous works [9] have demonstrated the relationship 

between task scheduling and the end-point or network contention in dynamical 

interconnections, proposing new scheduling models that could be used to be aware of 

the communication layer state.  

The process scheduler of Solaris is developed in a multilayer process-thread 

model. Solaris sets fixed time-slices that range between 20 and 200 ms for the lowest 

priorities in the system, that are the threads belonging to user processes. The above 

means that it can be expected that the interprocessor network will be under heavy load 

with communication peaks at predetermined intervals of time, when the switches 

between processes are happening. Overall, these intervals are in no way regular along 

time, because the execution is always being interrupted and continued. However, 

intervals in the order of tens or even hundreds of milliseconds will be long enough to 

be profitable for reconfiguration, even for slow switching technologies that can 

prepare and adapt the network to the expected burst of incoming traffic due to these 

process/context switches. 

 

3.2 Reconfiguration through the Context Switches 

By a context switch, the kernel saves the state of the current running process or thread 



and then loads the state of the next one to be executed. Just after the context switch, 

the processor will work with a completely different set of code and data, therefore the 

data in the cache will be invalidated and a communication peak to this processor will 

occur to fill the caches. All these operations will generate a sudden burst of traffic on 

the network as these structures are moved from caches and memories. 

An OS that can make use of a reconfigurable interconnection network will need 

to track every context switch and keep record of the traffic patterns it generates. It 

will be able then to inform the interconnection hardware when and how a 

reconfiguration can take place. As there is no practical way to predict in advance the 

occupancy of the network due to the new traffic and its destination, the system will 

determine to which node most of the traffic was flowing last time the same context 

was run, and prepare the network in consequence for this expected increase of load. 

The reconfiguration would then be triggered always by a context switch. The 

performance gain obtained will be optimum in case the network reconfiguration fits 

the expected traffic to a certain destination after a context switch.  

 

4. Simulation Environment 

For studying all the aspects involved in these contexts switches and build a coherent 

reconfiguration architecture, we have established a full-system simulation 

environment based on the commercially available Simics simulator [10]. A more 

detailed description of our environment can be found in [11].  

The interconnection network is a custom extension to Simics, where we modeled 

a 4x4 torus network with contention and cut-through routing.  In our simulations, only 

two multithreaded benchmark applications were strictly run at the same time as the 

main load, so we can suppose with a high level of certainty that on a context switch 

we will switch between the benchmarking applications and the daemons of the kernel 

(around 10-15). We focus our results on two types of loads: in one case we have 

loaded the machines with two simultaneous runs of a multithreaded Barnes algorithm 

from the SPLASH-2 scientific parallel benchmark suite [12], doing as well other 

simulations with several applications of the same suit for comparison purposes (FFT, 

Radiosity, etc.), and secondly the Apache web server v.1.3 concurrently run with the 

SURGE request generator [13]. Each of the above user process will start 16 threads, 

so that at all time as much as 32 threads will be competing to be run on the 16 

processors of the machine. Since the proposed reconfiguration scheme performance 

scales with the number of threads and processing nodes, our simulation results will 

benefit from higher processor counts. However, due to the extremely long simulation 

times and routing complexities, it was not feasible for the moment to perform 

simulations with more than 16 processors.  

Interrupts and system calls are managed by the OS in the machine, and in most 

cases do not require a whole process switch, so the context switches produced by 

them tend to be short and with low communication rates. We will not take them into 

account since their characteristics (in length and bandwidth consumption) did not 

offer a proper base to be used by a possible reconfiguration trigger. When filtering 

these short interrupts and system calls, we have only used execution intervals on 

every node lasting at least 10 ms, reconfiguring this way the whole network faster 

than the smallest 20 ms time slice executed on a single processor without interruption.  



5. Evaluating Communication and Reconfiguration 

In this section we present a study of the dynamics of the context switches happening 

on the system, and show how they can be used as a reconfiguration trigger. To show a 

preliminary effect of such reconfiguration, we run the simulations again, this time 

enhanced by the extra links placed between several pairs of nodes that are expected to 

have a high communication load due to a context switch happening on the OS.  

 

5.1 Context Switch Communication Patterns 

Within Simics, we have developed a module that monitors the occurrence of context 

switches in the simulated machine. From the possible events that can produce a 

context switch, we are mainly interested in process switches because they involve 

more of interchanged due to cache invalidation. In Table 1, values related to the 

average and maximum lengths of the contexts, as well as the number of switches, are 

presented during a 1400 ms benchmark execution.  

 
Table 1. Time elapsed between several context switches 

Length (ms)  

Application Mean Max 

 

# Switches 

SPLASH-2: FFT 9.94 12.96 303 

SPLASH-2: Cholesky 7.89 13.35 3402 

SPLASH-2: Ocean 10.35 14.10 3637 

SPLASH-2: Radiosity 10.48 14.28 133 

SPLASH-2: Barnes 14.42 224.236 111 

Apache Web server 86.58 1119.081 115 

 

The different behavior for every application and their interaction with the OS can 

be clearly seen here in the number of context switches occurred during simulation. 

Cholesky and Ocean were the more multithreaded parallel applications, originating 

much more switches on the system than the other ones. A large variation in the 

lengths can be observed for Barnes since mean and maximum values are much 

separated one from each other. We have plotted in Fig. 2 histograms of the context 

durations for the execution of the Barnes algorithm and the Apache web server.  

 
(a) Distribution of the contexts according to their duration (Barnes) 

 



(b) Distribution of the contexts according to their duration (Apache) 

 
Fig. 2. Histogram distribution of the length of the contexts for Barnes and Apache. More than 

1300 contexts last for less than 10 ms, and we can clearly observe a second peak of contexts 

around 50 ms. 

 

Despite the fact that we have already filtered the context switches with length not 

enough to be considered profitable to trigger a reconfiguration (< 1 ms), the majority 

of them have a short duration. It is remarkable that the number of longer contexts is 

still significant, taking into account that the simulation time was less than 1.5 seconds. 

With Apache, the context lengths are considerably longer, with some contexts 

lasting for even more than one second. While in the Barnes simulations every node 

was sharing data and a lot of interaction occurred, in the Apache simulation the 

different concurrent processes are more independent and run during longer time 

intervals. The process that contains the Apache’s kernel will receive the largest lump 

of traffic and will provide the requested pages by the other nodes, resulting in a large 

amount of interprocessor communication on this node.  

 

 
Fig. 3. Detail of outgoing traffic observed in a single node of the system during simulated time.  

Dashed lines are shown when a context switch occurs. 



 

We show how the generated traffic is correlated with the context switches. In Fig. 

3 the traffic flow of one single node is presented while context switches are indicated 

by vertical lines. At first glance, we can see how just after every context switch the 

bandwidth consumed on the network increases due to load/store operations from 

memories. This sudden rise, compared to the mean bandwidth consumed during the 

rest of the execution, is what we will consider a traffic burst. In some cases, we can 

even observe a peak of bandwidth consumption just before a context switch is 

happening, or even when no context switches are happening at all. This means that 

also other bursts of traffic are generated by the running application. 

Next we focus on the time length of these bursts. Hereto, we first define exactly 

how the length of the burst is measured, i.e. the burst duration is the time difference 

between the moment of maximum bandwidth of the burst and the moment when 

traffic drops to 10% of that maximum (see Fig. 4). If we define Tk,l(t) as the instant 

traffic flowing from node k to node l at time t, and τ
i
k the time where context switch i 

is happening at node k, we have that the bursts of traffic happening just after a context 

switch will be represented by: 

 

B
i
k,l (t – τ

i
k) = ΣTk,l (t)  .    τ

i
k  ≤  t < τ

i+1
k (1) 

 

     The amount of traffic moved by a burst is therefore directly related to the burst 

length. However, this traffic measured on one node can go to or arrive from different 

destinations. The proposed reconfiguration scheme would only add one extra link to a 

pair of nodes and hence it is needed to predict which node pair is going to show the 

highest traffic for a next context switch. In a low-latency interconnection with small 

transmission buffers, this can lead to congestion that can worsen the situation. 

After a context switch there was always one destination that was getting the 

majority of generated traffic, usually with a bandwidth that was 3-4 times higher than 

averaged traffic to other destinations. It will be critical to accurately know the final 

destination of this majority of this data communication in order to rearrange the 

topology and set the new extra link to the proper end node.  

 

 
Fig. 4. Diagram of a traffic burst generated after a context switch. 
 

5.2 Context-switch Triggered Reconfiguration 



Once the behavior of the communication system was monitored and measured, we 

have a base to establish the reconfiguration scheme that is triggered by the context 

switches. Reassigning dynamically the extra links to different node pairs with the 

higher instant load is expected to result in a speedup of the application running on the 

system. No limits are imposed on which 16 node pairs are connected at each time (the 

results of adding more realistic constraints can be found in in [5][6]). Therefore, the 16 

busiest node pairs in every reconfiguration interval can be directly connected by extra 

links according to measurements done on the previous reconfiguration interval.  

This way, for the last part of this study we implemented a basic reconfiguration 

scheme. For this preliminary study on the effects of reconfiguration we had no insight 

on the scheduler of the Solaris OS, and therefore could not use any information on the 

prediction for when and to which process a processor will switch. To get however 

some insight into the excepted performance speed-up, we partitioned the simulated 

time in discrete reconfiguration intervals such that the topology changes take place at 

certain moments (see Fig. 7). These intervals should be long enough to amortize on 

the temporal cost of reconfiguration, during which the extra links are being 

repositioned and are unusable. The trigger event for a new reconfiguration would be a 

context switch happening on the system, and the length would be that of the new 

context. Of course, a prediction model is needed to adapt the network for the 

upcoming switch, as it is unknown a priori when a switch will happen.  

As a basic prediction model, previously described in [14], we have divided the 

simulation time in reconfiguration intervals treconf. For now, we have not considered 

any down-time (due to extra link selection and optical switching, tse+tsw as shown in 

Fig. 5) that occurs during network readjustments to keep the performance study 

independent of the chosen switching technology. As long as the reconfiguration 

interval is chosen to be significantly longer than both, this is a good approximation. 

We have furthermore assumed equal characteristics for the extra links and the base 

network links, yielding the same average per-hop packet latency for both types of 

links. The destination node of the extra link will be that measured to have the largest 

bandwidth consumption on previous reconfiguration intervals. 

 

 
Fig. 5. In every reconfiguration interval, the system is monitoring the traffic flow, such that it 

can adjust the topology to accommodate the expected communication needs after a context 

switch. 

 

These connections are established just before a relevant context switch is 

expected. Of course, this will always be restricted to the prediction model used for 

determining the occurrence of a switch to a certain context and the destination of most 

of the traffic generated for that event. As computer communication is basically 

Observer 

Network 

Measurement 

Topology reconfiguration 

time 

Extra links live t reconf t se t sw 



unpredictable, it is necessary to constantly monitor the communication flow on the 

network and extract valuable information on the detected traffic patterns, 

incorporating it into a prediction model that will do the reconfiguration job.  

We proceeded with an implementation based on the accesses to the context 

register for determining the switches from the OS. There was a certain level of noise 

(2-5%) on application runtimes, stemming from the initial state of the cache memories 

as well as other scheduled internal tasks of the OS at the beginning of the simulations. 

In a real life case, we will not have perfect prediction of the context switches, and 

there will be a slight time shift between prediction and actual occurrence.  

After adding the extra links on reconfiguration intervals triggered by context 

switches of no less than 100 µs, latency was greatly reduced for a large percentage of 

the traffic, and the base network was relieved so that less congestion occurred. We 

found speed-ups in the overall execution time between 8-11% for most of the 

SPLASH-2 applications. This can be translated into a larger improvement in 

communication latency that better reflects the performance gain directly obtained by 

the reconfiguration. Further work is still undergoing to more accurately implement the 

reconfiguration and obtain a better performance. A more pronounced gain is expected 

with a more precise prediction of the moment the context switches are happening and 

of the final destination of the bursts generated. Simulating also larger networks will 

lead to higher savings in hop distances between nodes. Future work will include 

expanding the prediction model to more accurately follow the congestion on the 

network caused by different factors, and not only limited to context switches.  

6. Reconfigurable Optical Network Implementation 

Our proposal to build the reconfiguration layer of the interconnection network 

would consist of a tunable optical transmitter per processor node, transmitting data on 

a fixed number of source wavelengths. For scalability issues it would also be 

desirable to implement a design that allows the inclusion of new sets of processors as 

the size of the network increases, via optical broadcasting of the light in several 

subsets of nodes. Each processor node would also incorporate an optical receiver 

which is sensitive to one wavelength only. Hence, by tuning the wavelength of each 

transmitter one would address the destination. More on this proposed optical 

implementation and the optical broadcasting can be found in [15].  

 

7. Conclusions 
The context switch offers a recurrent event that can be used as a base to predict high 

periods of heavy load in the internal communication of the machine. We can conclude 

that there are indeed clear intervals corresponding to switches leading to periods of 

high communication between the nodes of the system. In many cases, the presence of 

these bursts is overlapped with peaks of traffic coming from the normal execution 

process and a reconfiguration which takes place on this moment can take profit for the 

whole context traffic. 

However the observed variability of the context switch durations in this study 

requires more attention in distinguishing and predicting context switches by the 

operating system. We briefly showed the possibility of using these traffic bursts by a 

reconfigurable network that is able to modify its topology over the time, obtaining a 

first significant speed up around 10% in the overall execution time. This interconnect 



would be possible to implement by current slow, low-cost optical switching 

technologies. 
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