161 research outputs found

    The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition

    Get PDF
    We formulate the thermal renormalization group, an implementation of the Wilsonian RG in the real-time (CTP) formulation of finite temperature field theory, for fermionic fields. Using a model with scalar and fermionic degrees of freedom which should describe the two-flavor chiral phase-transition, we discuss the mechanism behind fermion decoupling and universality at second order transitions. It turns out that an effective mass-like term in the fermion propagator which is due to thermal fluctuations and does not break chiral symmetry is necessary for fermion decoupling to work. This situation is in contrast to the high-temperature limit, where the dominance of scalar over fermionic degrees of freedom is due to the different behavior of the distribution functions. The mass-like contribution is the leading thermal effect in the fermionic sector and is missed if a derivative expansion of the fermionic propagator is performed. We also discuss results on the phase-transition of the model considered where we find good agreement with results from other methods.Comment: References added, minor typos correcte

    Heisenberg frustrated magnets: a nonperturbative approach

    Full text link
    Frustrated magnets are a notorious example where the usual perturbative methods are in conflict. Using a nonperturbative Wilson-like approach, we get a coherent picture of the physics of Heisenberg frustrated magnets everywhere between d=2d=2 and d=4d=4. We recover all known perturbative results in a single framework and find the transition to be weakly first order in d=3d=3. We compute effective exponents in good agreement with numerical and experimental data.Comment: 5 pages, Revtex, technical details available at http://www.lpthe.jussieu.fr/~tissie

    Flow Equations without Mean Field Ambiguity

    Full text link
    We compare different methods used for non-perturbative calculations in strongly interacting fermionic systems. Mean field theory often shows a basic ambiguity related to the possibility to perform Fierz transformations. The results may then depend strongly on an unphysical parameter which reflects the choice of the mean field, thus limiting the reliability. This ambiguity is absent for Schwinger-Dyson equations or fermionic renormalization group equations. Also renormalization group equations in a partially bosonized setting can overcome the Fierz ambiguity if the truncation is chosen appropriately. This is reassuring since the partially bosonized renormalization group approach constitutes a very promising basis for the explicit treatment of condensates and spontaneous symmetry breaking even for situations where the bosonic correlation length is large.Comment: New version to match the one published in PRD. New title (former title: Solving Mean Field Ambiguity by Flow Equations), added section IX and appendix B. More explanations in the introduction and conclusions. 16 pages, 6 figures and 3 tables uses revtex

    A non perturbative approach of the principal chiral model between two and four dimensions

    Full text link
    We investigate the principal chiral model between two and four dimensions by means of a non perturbative Wilson-like renormalization group equation. We are thus able to follow the evolution of the effective coupling constants within this whole range of dimensions without having recourse to any kind of small parameter expansion. This allows us to identify its three dimensional critical physics and to solve the long-standing discrepancy between the different perturbative approaches that characterizes the class of models to which the principal chiral model belongs.Comment: 5 pages, 1 figure, Revte

    On the Mass Spectrum of the SU(2) Higgs Model in 2+1 Dimensions

    Get PDF
    We calculate the masses of the low-lying states with quantum numbers JPC=0++,1J^{PC}=0^{++},1^{--} in the Higgs and confinement regions of the three-dimensional SU(2) Higgs model, which plays an important r\^ole in the description of the thermodynamic properties of the standard model at finite temperatures. We extract the masses from correlation functions of gauge-invariant operators which are calculated by means of a lattice Monte Carlo simulation. The projection properties of our lattice operators onto the lowest states are greatly improved by the use of smearing techniques. We also consider cross correlations between various operators with the same quantum numbers. From these the mass eigenstates are determined by means of a variational calculation. In the symmetric phase, we find that some of the ground state masses are about 30\% lighter than those reported from previous simulations. We also obtain the masses of the first few excited states in the symmetric phase. Remarkable among these is the occurrence of a 0++0^{++} state composed almost entirely of gauge degrees of freedom. The mass of this state, as well as that of its first excitations, is nearly identical to the corresponding glueball states in three-dimensional SU(2) pure gauge theory, indicating an approximate decoupling of the pure gauge sector from the Higgs sector of the model. We perform a detailed study of finite size effects and extrapolate the lattice mass spectrum to the continuum.Comment: 30 pages LATEX, uses epsf.st

    The PERK Inhibitor GSK2606414 Enhances Reovirus Infection in Head and Neck Squamous Cell Carcinoma via an ATF4-Dependent Mechanism.

    Get PDF
    Reovirus type 3 Dearing (reovirus) is a tumor-selective oncolytic virus currently under evaluation in clinical trials. Here, we report that the therapeutic efficacy of reovirus in head and neck squamous cell cancer can be enhanced by targeting the unfolded protein response (UPR) kinase, protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). PERK inhibition by GSK2606414 increased reovirus efficacy in both 2D and 3D models in vitro, while perturbing the normal host cell response to reovirus-induced endoplasmic reticulum (ER) stress. UPR reporter constructs were used for live-cell 3D spheroid imaging. Profiling of eIF2a-ATF4, IRE1a-XBP1, and ATF6 pathway activity revealed a context-dependent increase in eIF2a-ATF4 signaling due to GSK2606414. GSK2606414 blocked eIF2a-ATF4 signaling because of the canonical ER stress agent thapsigargin. In the context of reovirus infection, GSK2606414 induced eIF2a-ATF4 signaling. Knockdown of eIF2a kinases PERK, GCN2, and PKR revealed eIF2a-ATF4 reporter activity was dependent on either PERK or GCN2. Knockdown of ATF4 abrogated the GSK2606414-induced increase in reovirus protein levels, confirming eIF2a-ATF signaling as key to the observed phenotype. Our work identifies a novel approach to enhance the efficacy and replication of reovirus in a therapeutic setting

    Two-Loop Effective Potential of O(N)-Symmetric Scalar QED in 4-epsilon Dimensions

    Full text link
    The effective potential of scalar QED is computed analytically up to two loops in the Landau gauge. The result is given in 4-epsilon dimensions using minimal subtraction and epsilon-expansions. In three dimensions, our calculation is intended to help throw light on unsolved problems of the superconducting phase transition, where critical exponents and the position of the tricritical point have not yet found a satisfactory explanation within the renormalization group approach.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/32

    Critical Phenomena with Linked Cluster Expansions in a Finite Volume

    Full text link
    Linked cluster expansions are generalized from an infinite to a finite volume. They are performed to 20th order in the expansion parameter to approach the critical region from the symmetric phase. A new criterion is proposed to distinguish 1st from 2nd order transitions within a finite size scaling analysis. The criterion applies also to other methods for investigating the phase structure such as Monte Carlo simulations. Our computational tools are illustrated at the example of scalar O(N) models with four and six-point couplings for N=1N=1 and N=4N=4 in three dimensions. It is shown how to localize the tricritical line in these models. We indicate some further applications of our methods to the electroweak transition as well as to models for superconductivity.Comment: 36 pages, latex2e, 7 eps figures included, uuencoded, gzipped and tarred tex file hdth9607.te

    Masses and Phase Structure in the Ginzburg-Landau Model

    Get PDF
    We study numerically the phase structure of the Ginzburg-Landau model, with particular emphasis on mass measurements. There is no local gauge invariant order parameter, but we find that there is a phase transition characterized by a vanishing photon mass. For type I superconductors the transition is of 1st order. For type II 1st order is excluded by susceptibility analysis, but the photon correlation length suggests 2nd order critical behaviour with \nu ~ 1/2. The scalar mass, in contrast, does not show clear critical behaviour in the type II regime for V \to \infty, contrary to the conventional picture.Comment: 16 pages, 6 figures. More data gathered, allowing more definite conclusion

    Deconfinement transition in three-dimensional compact U(1) gauge theories coupled to matter fields

    Get PDF
    It is shown that permanent confinement in three-dimensional compact U(1) gauge theory can be destroyed by matter fields in a deconfinement transition. This is a consequence of a non-trivial infrared fixed point caused by matter, and an anomalous scaling dimension of the gauge field. This leads to a logarithmic interaction between the defects of the gauge-fields, which form a gas of magnetic monopoles. In the presence of logarithmic interactions, the original electric charges are unconfined. The confined phase which is permanent in the absence of matter fields is reached at a critical electric charge, where the interaction between magnetic charges is screened by a pair unbinding transition in a Kosterlitz-Thouless type of phase-transition.Comment: RevTex4, 4 pages, no figures; version accepted for publication in PR
    corecore