816 research outputs found

    Observations of Active Region Loops with the EUV Imaging Spectrometer on Hinode

    Full text link
    Previous solar observations have shown that coronal loops near 1 MK are difficult to reconcile with simple heating models. These loops have lifetimes that are long relative to a radiative cooling time, suggesting quasi-steady heating. The electron densities in these loops, however, are too high to be consistent with thermodynamic equilibrium. Models proposed to explain these properties generally rely on the existence of smaller scale filaments within the loop that are in various stages of heating and cooling. Such a framework implies that there should be a distribution of temperatures within a coronal loop. In this paper we analyze new observations from the EUV Imaging Spectrometer (EIS) on \textit{Hinode}. EIS is capable of observing active regions over a wide range of temperatures (\ion{Fe}{8}--\ion{Fe}{17}) at relatively high spatial resolution (1\arcsec). We find that most isolated coronal loops that are bright in \ion{Fe}{12} generally have very narrow temperature distributions (σT3×105\sigma_T \lesssim 3\times10^5 K), but are not isothermal. We also derive volumetric filling factors in these loops of approximately 10%. Both results lend support to the filament models.Comment: Submitted to ApJ

    Deconvolution of directly precipitating and trap-precipitating electrons in solar flare hard x-rays. III.Yohkoh hard x-ray telescope data analysis

    Get PDF
    We analyze the footpoint separation d and flux asymmetry A of magnetically conjugate double footpoint sources in hard X-ray images from the Yohkoh Hard X-Ray Telescope (HXT). The data set of 54 solar flares includes all events simultaneously observed with the Compton Gamma Ray Observatory (CGRO) in high time resolution mode. From the CGRO data we deconvolved the direct-precipitation and trap-precipitation components previously (in Paper II). Using the combined measurements from CGRO and HXT, we develop an asymmetric trap model that allows us to quantify the relative fractions of four different electron components, i.e., the ratios of direct-precipitating (q_P1, q_P2) and trap-precipitating electrons (q_T1, q_T2) at both magnetically conjugate footpoints. We find mean ratios of q_P1=0.14+/-0.06, q_P2=0.26+/-0.10, and q_T=q_T1+q_T2=0.60+/-0.13. We assume an isotropic pitch-angle distribution at the acceleration site and double-sided trap precipitation (q_T2/q_T1=q_P2/q_P1) to determine the conjugate loss-cone angles (alpha_1=42^deg+/-11^deg and alpha_2=52^deg+/-10^deg) and magnetic mirror ratiosat both footpoints (R_1=1.6,...,4.0 and R_2=1.3,...,2.5). From the relative displacement of footpoint sources we also measure altitude differences of hard X-ray emission at different energies, which are found to decrease systematically with higher energies, with a statistical height difference of h_Lo-h_M1=980+/-250 km and h_M1-h_M2=310+/-300 km between the three lower HXT energy channels (Lo, M1, M2

    A solar active region loop compared with a 2D MHD model

    Full text link
    We analyzed a coronal loop observed with the Normal Incidence Spectrometer (NIS), which is part of the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO). The measured Doppler shifts and proper motions along the selected loop strongly indicate unidirectional flows. Analysing the Emission Measure Curves of the observed spectral lines, we estimated that the temperature along the loop was about 380000 K. We adapted a solution of the ideal MHD steady equations to our set of measurements. The derived energy balance along the loop, as well as the advantages/disadvantages of this MHD model for understanding the characteristics of solar coronal loops are discussed.Comment: A&A in press, 10 pages, 6 figure

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. II. Numeric Code and Tests

    Full text link
    Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (1990) model. The forward-fitting tests demonstrate: (i) a satisfactory convergence behavior (with typical misalignment angles of μ110\mu \approx 1^\circ-10^\circ), (ii) relatively fast computation times (from seconds to a few minutes), and (iii) the high fidelity of retrieved force-free α\alpha-parameters (αfit/αmodel0.91.0\alpha_{\rm fit}/\alpha_{\rm model} \approx 0.9-1.0 for simulations and αfit/αmodel0.7±0.3\alpha_{\rm fit}/\alpha_{\rm model} \approx 0.7\pm0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-forcefree magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing {\sl nonlinear force-free field (NLFFF)} codes based on photospheric magnetograms without coronal constraints.Comment: Solar PHysics, (in press), 25 pages, 11 figure

    Deterministically Driven Avalanche Models of Solar Flares

    Full text link
    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar Physic

    The Source of Three-minute Magneto-acoustic Oscillations in Coronal Fans

    Get PDF
    We use images of high spatial, spectral and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the coupling between wave phenomena observed at numerous heights in the solar atmosphere. Intensity oscillations of 3 minutes are observed to encompass photospheric umbral dot structures, with power at least three orders-of-magnitude higher than the surrounding umbra. Simultaneous chromospheric velocity and intensity time series reveal an 87 \pm 8 degree out-of-phase behavior, implying the presence of standing modes created as a result of partial wave reflection at the transition region boundary. An average blue-shifted Doppler velocity of ~1.5 km/s, in addition to a time lag between photospheric and chromospheric oscillatory phenomena, confirms the presence of upwardly-propagating slow-mode waves in the lower solar atmosphere. Propagating oscillations in EUV intensity are detected in simultaneous coronal fan structures, with a periodicity of 172 \pm 17 s and a propagation velocity of 45 \pm 7 km/s. Numerical simulations reveal that the damping of the magneto-acoustic wave trains is dominated by thermal conduction. The coronal fans are seen to anchor into the photosphere in locations where large-amplitude umbral dot oscillations manifest. Derived kinetic temperature and emission measure time-series display prominent out-of-phase characteristics, and when combined with the previously established sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal counterparts of the upwardly-propagating magneto-acoustic slow-modes detected in the lower solar atmosphere. Thus, for the first time, we reveal how the propagation of 3 minute magneto-acoustic waves in solar coronal structures is a direct result of amplitude enhancements occurring in photospheric umbral dots.Comment: Accepted into ApJ (13 pages and 10 figures

    Hinode/Extreme-Ultraviolet Imaging Spectrometer Observations of the Temperature Structure of the Quiet Corona

    Full text link
    We present a Differential Emission Measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on {\it Hinode}. We show that the expected quiet Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log\log T = 5.6 to 6.4 K that can be used to derive the DEM distribution reliably. The subset can be used without the need for extensive measurements and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1"" pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet Sun datasets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log\log T \sim 6.2 K in all cases. This result is consistent with the view that the {\it shape} of the quiet Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This {\it universal} DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet Sun region to region.Comment: Version accepted by ApJ and published in ApJ 705. Abridged abstrac

    Characteristics and Evolution of the Magnetic field and Chromospheric Emission in an Active Region Core Observed by Hinode

    Full text link
    We describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope on Hinode. Consistent with previous studies, we find that the moss is unipolar, the spatial distribution of magnetic flux evolves slowly, and the magnetic field is only moderately inclined. We show that the field line inclination and horizontal component are coherent, and that the magnetic field is mostly sheared in the inter-moss regions where the highest magnetic flux variability is seen. Using extrapolations from SP magnetograms we show that the magnetic connectivity in the moss is different than in the quiet Sun because most of the magnetic field extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic, but actually show only small scale variations in magnitude on time-scales longer than the cooling times for hydrodynamic loops computed from our extrapolations, suggesting high-frequency (continuous) heating events. Some evidence is found for flux (Ca 2 intensity) changes on the order of 100--200 G (DN) on time-scales of 20--30 mins that could be taken as indicative of low-frequency heating. We find, however, that only a small fraction (10%) of our simulated loops would be expected to cool on these time-scales, and we find no clear evidence that the flux changes consistently produce intensity changes in the chromosphere. The magnetic flux and chromospheric intensity in most individual SOT pixels in the moss vary by less than ~ 20% and ~ 10%, respectively, on loop cooling time-scales. In view of the high energy requirements of the chromosphere, we suggest that these variations could be sufficient for the heating of `warm' EUV loops, but that the high basal levels may be more important for powering the hot core loops rooted in the moss.Comment: Accepted by ApJ, 16 pages, 20 figures. Abridged abstract (original is in PDF file). Figures 1 & 2 are reduced resolution to meet size limit
    corecore