316 research outputs found

    Malingering and the fraudulent motor insurance claimant

    Get PDF
    Malingering is the intentional production of false or grossly exaggerated symptoms in order to obtain an advantage. Although it has been estimated that over 800,000 claims for personal injury in Road Traffic Accidents (RTA) were filed in the UK in 2012, no approximation exists for how many involved malingering. This study attempts to understand what influences a psychiatrist to conclude that a claimant’s symptoms are not caused by an RTA and thus suggests the claimant is malingering. This article describes a study of Personality Assessment Inventory scores alongside collateral forms of evidence for 100 RTA claimants; all individuals seeking compensation for damages to their mental health. The results suggest that up to 40% of these claims could be categorised as not being the result of the RTA. Significant differences emerged between those claimants diagnosed as having a mental disorder as a result of the RTA and those claimants who were classified as not having a mental disorder as a result of the RTA in regards to: employment status, level of injuries and scores on the paranoia scales of the PAI. The study emphasises how the assessment process is idiosyncratic and in need of further research

    Successful new product development by optimizing development process effectiveness in highly regulated sectors: the case of the Spanish medical devices sector

    Get PDF
    Rapid development and commercialization of new products is of vital importance for small and medium sized enterprises (SME) in regulated sectors. Due to strict regulations, competitive advantage can hardly be achieved through the effectiveness of product concepts only. If an SME in a highly regulated sector wants to excell in new product development (NPD) performance, the company should focus on the flexibility, speed, and productivity of its NPD function: i.e. the development process effectiveness. Our main research goals are first to explore if SMEs should focus on their their development process effectiveness rather than on their product concept effectiveness to achieve high NPD performance; and second, to explore whether a shared pattern in the organization of the NPD function can be recognized to affect NPD performance positively. The medical devices sector in Spain is used as an example of a\ud highly regulated sector. A structured survey among 11 SMEs, of which 2 were studied also as in in-depth case studies, led to the following results. First of all, indeed the companies in the dataset which focused on the effectiveness of their development process, stood out in NPD performance. Further, the higher performing companies did have a number of commonalities in the organisation of their NPD function: 1) The majority of the higher performing firms had an NPD strategy characterized by a predominantly incremental project portfolio.\ud 2) a) Successful firms with an incremental project portfolio combined this with a functional team structure b) Successful firms with a radical project portfolio combined this with a heavyweight or autonomous team structure.\ud 3) A negative reciprocal relationship exists between formalization of the NPD processes and the climate of the NPD function, in that a formalized NPD process and an innovative climate do not seem to reinforce each other. Innovative climate combined with an informal NPD process does however contribute positively to NPD performance. This effect was stronger in combination with a radical project portfolio. The highest NPD performance was measured for companies focusing mainly on incremental innovation. It is argued that in highly regulated sectors, companies with an incremental product portfolio would benefit from employing a functional structure. Those companies who choose for a more radical project portfolio in highly regulated sectors should be aware\ud that they are likely to excell only in the longer term by focusing on strategic flexibility. In their NPD organization, they might be well advised to combine informal innovation processes with an innovative climate

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Human cytomegalovirus haplotype reconstruction reveals high diversity due to superinfection and evidence of within-host recombination

    Get PDF
    Recent sequencing efforts have led to estimates of human cytomegalovirus (HCMV) genome-wide intrahost diversity that rival those of persistent RNA viruses [Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) PLoS Pathog 7:e1001344]. Here, we deep sequence HCMV genomes recovered from single and longitudinally collected blood samples from immunocompromised children to show that the observations of high within-host HCMV nucleotide diversity are explained by the frequent occurrence of mixed infections caused by genetically distant strains. To confirm this finding, we reconstructed within-host viral haplotypes from short-read sequence data. We verify that within-host HCMV nucleotide diversity in unmixed infections is no greater than that of other DNA viruses analyzed by the same sequencing and bioinformatic methods and considerably less than that of human immunodeficiency and hepatitis C viruses. By resolving individual viral haplotypes within patients, we reconstruct the timing, likely origins, and natural history of superinfecting strains. We uncover evidence for within-host recombination between genetically distinct HCMV strains, observing the loss of the parental virus containing the nonrecombinant fragment. The data suggest selection for strains containing the recombinant fragment, generating testable hypotheses about HCMV evolution and pathogenesis. These results highlight that high HCMV diversity present in some samples is caused by coinfection with multiple distinct strains and provide reassurance that within the host diversity for single-strain HCMV infections is no greater than for other herpesviruses

    On the nonemptiness of approximate cores of large games

    Get PDF
    We provide a new proof of the nonemptiness of approximate cores of games with many players of a finite number of types. Earlier papers in the literature proceed by showing that, for games with many players, equal-treatment cores of their “balanced cover games,” which are nonempty, can be approximated by equal-treatment \varepsilon ? -cores of the games themselves. Our proof is novel in that we develop a limiting payoff possibilities set and rely on a fixed point theorem

    Demographic and reproductive associations with nematode infection in a long-lived mammal

    Get PDF
    Infection by macroparasites, such as nematodes, varies within vertebrate host systems; elevated infection is commonly observed in juveniles and males, and, for females, with different reproductive states. However, while such patterns are widely recognized in short-lived model systems, how they apply to long-lived hosts is comparatively understudied. Here, we investigated how infection varies with host age, sex, and female reproduction in a semi-captive population of individually marked Asian elephants Elephas maximus. We carried out 1,977 faecal egg counts (FECs) across five years to estimate nematode loads for 324 hosts. Infection patterns followed an established age-infection curve, whereby calves (5 years) exhibited the highest FECs and adults (45 years) the lowest. However, males and females had similar FECs across their long lifespan, despite distinct differences in life-history strategy and clear sexual dimorphism. Additionally, although mothers invest two years in pregnancy and a further three to five years into lactation, nematode load did not vary with four different measures of female reproduction. Our results provide a much-needed insight into the host-parasite dynamics of a long-lived host; determining host-specific associations with infection in such systems is important for broadening our knowledge of parasite ecology and provides practical applications for wildlife medicine and management

    Fermentative production of isobutene

    Get PDF
    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO2 + 2H2O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO2. The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg−1, which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock

    MIDA boronates are hydrolysed fast and slow by two different mechanisms

    Get PDF
    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative 'neutral' hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by (18)O incorporation. Whether hydrolysis is 'fast' or 'slow' is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis
    corecore