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192 N. Allouch, M. Wooders

1 Introduction

The core is an anchoring concept in game theory going back, in its origins, to Edge-
worth’s contract curve, and the contributions of Debreu and Scarf (1963) and Aumann
(1964). The core remains a central concept in economics and most recently, in market
design; see, for example, Roth (2002). Even in games with many, but finite numbers
of players, however, the core may be empty. The addition of a single player to a large
game with a nonempty core may result in a game with an empty core. The problem of
the emptiness of the core is especially salient in economies with public goods subject
to congestion and exclusion (local public goods) or in economies with clubs. Even in
pure exchange economies, the nonemptiness of the core can depend on whether com-
modities are infinitely divisible. It is, however, a remarkable fact that, as established
by Wooders (1983) and a number of subsequent papers, games with many players
satisfying apparently mild conditions have nonempty approximate cores.

In this paper, inspired by the payoff-dependent balancedness notion1 ofHerings and
Predtetchinski and Herings (2004) and Bonnisseau and Iehlé (2007),2 we demonstrate
nonemptiness of approximate cores for sequences of games with arbitrary distrib-
utions of players. Recall that much of the literature on approximate cores of NTU
games, beginning with Wooders (1983) and most recently Kovalenkov and Wooders
(2001), Kovalenkov and Wooders (2003) and Wooders (2008), establishes nonempti-
ness of approximate cores of large games by showing that payoffs in the cores of
derived “balanced cover” games can be approximated by feasible payoffs of the orig-
inal games. Quite surprisingly, a modification of a key construct from the literature
on payoff-dependent balancedness, a correspondence from limiting feasible payoffs
to distributions of players types3 achieving them, enables us to establish that for large
games limiting payoffs vary continuously with the distribution of player types. With
such a correspondence in hand, we can bypass approximation of the original games
by balanced cover games and simply appeal to a fixed point argument rather than to
approximating balanced games. An especially interesting aspect of our proof is that
we obtain a limiting payoff set that is the analogue of the limiting utility function
of Wooders (1994) describing TU games with many players as market games. This
paper lays a foundation for further investigation of many player nontransferable utility
games as market games.

More specifically, for sequence of games with growing numbers of players of each
of a finite number of types and arbitrary distributions of player types we introduce
a set of limiting equal-treatment payoffs, denoted by Γ , and a correspondence from
payoffs in Γ to distributions of players types able to achieve them. A limiting equal-

1 Payoff-dependent balancedness generalizes thewell-known notion of Scarf balancedness for NTUgames.
2 As they discuss, the intuition behind the Bonnisseau and Iehlé (2007) result comes from the existence of
a general pricing rule equilibrium in an economywith a nonconvex production sectors, as in Bonnisseau and
Cornet (1988), Bonnisseau et al. (1991) and Bonnisseau (1997), which show that core payoffs correspond
to equilibrium allocations of a suitably constructed two-production-set auxiliary economy.
3 In interpretation, a distribution of player types is simply a list of percentages of players of each type. For
large games it also reflects a set of players á la Aubin (1979), where players have different participation
rates (see also Florenzano 1990; Allouch and Florenzano 2004).
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On the nonemptiness of approximate cores of large games 193

treatment payoff is approximately feasible for some group, possibly large, described
by the distribution of player types in the group. We require essentially four conditions
for our results:

1. Superadditivity (SA): Any group N of players can realize at least the payoffs
achievable by cooperation only within groups in a partition of N ;

2. Players of the same type are substitutes (PSTS): The payoff possibilities set of a
group N depends on the types profile of the group and not on the names of its
members;

3. Convexity (CONV): For each group N the payoff possibilities set is convex;
4. Small group effectiveness (SGE): All or almost all gains to group formation can

be realized by groups uniformly bounded in size.

Our result extends that of Wooders (1983) in that our limiting construct is not
restricted to games with a fixed distribution of player types; instead we consider all
sequences of games with growing player sets converging to some given distribution
of types. While we use SGE, Wooders (1983) uses the apparently milder condition
of boundedness of per capita payoffs. We use SGE since it is easier to work with and
closely related. Recall that Wooders (2008, Theorem 2) uses similar conditions as
employed in this paper to demonstrate that, for games with a compact metric space of
player types, given ε > 0 there is an integer η0(ε) such that all games with more than
η0(ε) players have nonempty equal-treatment ε-cores.

Although both Predtetchinski (2005) and Allouch and Predtetchinski (2008) use
the notion of payoff-dependent balancedness, their approaches differ in many aspects
from that of the current paper. First, the current paper deals with a sequence of games
defined in characteristic form with possibly ever-increasing equal-treatment payoff
sets. Our framework, as Wooders (1983) and subsequent papers on games with many
players, can accommodate a general class of exchange economies including ones with
(local) public goods and clubs. In contrast, Predtetchinski (2005) and Allouch and
Predtetchinski (2008) treat a pure exchange economy, where equal-treatment payoff
sets are identical under replications of the total player set. As a result, in our approach
both feasible payoffs and core concepts are defined approximately for large finite
games, in contrast to Predtetchinski (2005) and Allouch and Predtetchinski (2008)
where feasible payoffs and core concepts are exactly defined. Moreover, the crucial
argument in our paper, based on small group effectiveness, is to show that payoffs
achieved in the limit by a distribution of player types vary continuously with the
distribution of player types. However, in Allouch and Predtetchinski (2008) such
a continuity argument is inferred directly from the upper semi-continuity of utility
functions over feasible allocations. Finally, in our approach we seek a fixed point for
an arbitrary limiting distribution of player types, (both rational and nonrational), unlike
Allouch and Predtetchinski (2008) where the distribution of players type is fixed and
rational.

The paper is organized as follows. In Sect. 2, we present the basic features of games
with a finite number of types of players. In Sect. 3, we present our main result on the
nonemptiness of approximate cores of a sequence of games with a finite number of
types of players. Section 4 provides the proof of our main result, and we conclude in
Sect. 5 with a comparison to the literature.
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194 N. Allouch, M. Wooders

2 NTU games with a finite number of types of players

We investigate games with a fixed finite set of player types T = {1, . . . , T }. Let

N = {(t, q) | t = 1, . . . , T and q ∈ Z+},

where Z+ is the set of nonnegative integers. Note thatN is a countably infinite set. A
group of players is a finite subset of N , with a typical group denoted by N ⊂ N . The
profile of N , denoted by pro(N ), is defined as follows:

pro(N ) = (pro1(N ), . . . , proT (N )),

where prot (N ) denotes the number of players of type t in N . Also, let |N | =∑
t∈T prot (N ) denote the number of players in N .
We take as given a correspondence V mapping each group N into a subset of RN .

For each group of players N , the correspondence has the following properties:

V(N ) is a closed subset of RN ;
0 ∈ intV(N );
V(N ) is comprehensive from below (that is, if x ∈ V(N ) and if y ∈ R

N , y ≤ x
then y ∈ V(N ));
V(N ) ∩ R

N+ is bounded above.

We also assume that correspondence V satisfies the following properties.

2.1 Superadditivity (SA)

For any group of players N and any partition P(N ) = (Nk)
K
k=1 of N into groups with

the property that v ∈ V(Nk) × R
N\Nk for each k, it holds that v ∈ V(N ), that is,

K⋂

k=1

(
V(Nk) × R

N\Nk
)

⊂ V(N ).

Superadditivity implies that any payoff vector that can be realized by groups in a
partition of a group of players is feasible for the entire group of players.

The following notion of substitute players in NTU games was introduced inWood-
ers (1983). For NTU games, to capture the notion of substitutes it is necessary to
require not only that substitute players make the same contribution to any group they
may join but also that they are interchangeable when they are both in the same group.

2.2 Players of the same type are substitutes (PSTS)

For any group of players N and any two players (t, q) and (t, q ′) (a) if (t, q) /∈ N
and (t, q ′) /∈ N , given any v ∈ V(N ∪ {(t, q)}) it holds that v′ ∈ V(N ∪ {(t, q ′)}),
where v′ is defined by v′

tq ′ = vtq and v′
� = v� for all � ∈ N , � �= (t, q), (t, q ′) and (b)
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On the nonemptiness of approximate cores of large games 195

if (t, q), (t, q ′) ∈ N , given any v ∈ V(N ) it holds that v′ ∈ V(N ) where v′
tq ′ = vtq ,

v′
tq = vtq ′ and v′

� = v� for all � ∈ N , � �= (t, q), (t, q ′).4
Given v = (v1, . . . , vT ) ∈ R

T , for any group of players N define vN ∈ R
N such

that for each (t, q) ∈ N it holds that (vN )tq = vt . When vN ∈ V(N ) we say that v

represents an equal-treatment payoff in V(N ). Let

Vetp(N )
def= {v ∈ R

T | vN ∈ V(N )},
denote the subset of payoff vectors that represent equal-treatment payoffs in V(N ).
Note that Vetp(N ) is nonempty since it always contains the 0 payoff and is uncon-
strained for player types that do not appear in N . Moreover, in view of PSTS, it holds
that the equal-treatment payoff set Vetp(N ) of a group of players N depends only on
the profile pro(N ).5

2.3 Convexity (CONV)

For each group N ⊂ N the set V(N ) is convex.
Convexity of payoff sets is often used in studies of NTU games and is satisfied

for the special case of games with transferable utility. For our purposes in this paper,
convexity is used to ensure that the average of any finite set of feasible payoffs is
feasible.

2.4 Small group effectiveness (SGE)

For every ε > 0, there is a positive integer τ(ε) such that each group N ⊂ N has a
partition P(N ) = (Nk)

K
k=1 with the properties that |Nk | ≤ τ(ε) for each k, and

Vetp(N ) ⊂
K⋂

k=1

Vetp(Nk) + ε1,

where 1 = (1, . . . , 1) ∈ R
T .

Small group effectiveness ensures that, given arbitrarily small ε, almost all (within ε)
gains to group formation can be realized by a partition of the group of players into
groups uniformly bounded in size.6

4 For the reader familiar with Wooders (2008), we note with this requirement, that players of the same
type are substitutes, the correspondence V determines a “pregame” with a finite number of types.
5 To see this, let N and N ′ be groups of players with the same profiles. Let τ be a type-preserving one-
to-one mapping from N onto N ′ (that is, if (t, q) ∈ N then τ((t, q)) = (t, q ′) for some q ′ such that

(t, q ′) ∈ N ′). Given a set Y ⊂ R
N , let στ (Y ) ⊂ R

N ′
denote the set formed from Y by substituting the

values of the coordinates according to the mapping τ . In view of PSTS, it holds that V(N ) = σ−1
τ (V(N ′)),

which implies that Vetp(N ) = Vetp(N ′). Hence, PSTS implies that the equal-treatment payoff set Vetp(N )

of a group of players N depends only on the profile pro(N ).
6 While other related conditions appear in the literature, such as boundedness of the set of equal-treatment
payoffs and strict small group effectiveness, the condition of SGE, which precisely limits the power of
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196 N. Allouch, M. Wooders

3 The limiting utility possibilities set for NTU games

Following Scarf’s (1967) definition of an NTU game, with every group N ⊂ N
we associate an NTU game (N , V ) defined by the property that for each nonempty
subset S of N it holds that V (S) = V(S) × R

N\S . Thus, given the player set N , the
correspondence V determines the NTU game (in coalitional function form) (N , V ),
where N is a finite set (the set of players) and V is a set-valued function that assigns
to each nonempty subset S of N (a group or coalition ) a nonempty subset V (S) of
R

N , called a payoff possibilities set or simply a payoff set.
A payoff vector for the game (N , V ) is a vector x in R

N . A payoff vector x is
feasible for N if x ∈ V (N ). A payoff vector x is in the ε-core of the game (N , V ) if
it is feasible for N and if, for every subset S of N , x + ε1N /∈ int V (S). Informally, a
feasible payoff vector x is in the ε-core if no group of players can improve upon x by
more than ε for each player in the group.7

During the proof of the following theorem, we will use the following notation:
Denote by ‖·‖ the sum-metric in R

T ; that is, for s ∈ R
T we have ‖s‖ = ∑T

t=1 |st |.
For each point s ∈ R

T let supp(s) denote the set {t ∈ T | st > 0}, called the support
of s. Let Δ denote the simplex in RT : Δ={s ∈ R

T+ | ‖s‖ = 1} and let intΔ denote its
(relative) interior.

Theorem Assume that V satisfies SA, PSTS, SGE, and CONV. Let {(N n, V )}n be a
sequence of games such that |N n| → ∞ and

lim
n→+∞

pro(N n)

|N n| = s∗ ∈ intΔ.

Then there exists v∗ ∈ R
T satisfying the property: for every ε > 0 there is an integer

rε such that for each n ≥ rε, (v∗ − ε1)N n is in the ε-core of (N n, V ).

Our novel proof is contained in the next section. In the remainder of this section, we
introduce some notation used in the proof and indicate how the result is obtained.

Define a subset Γ of RT as follows:

Γ
def=

⎧
⎨

⎩
v ∈ R

T
∣
∣
∣
∣

There exists s ∈ Δ ∩ Q
T such that,

for each ε > 0, there exists a group Nε satisfying
pro(Nε)

|Nε | = s and (v − ε1) ∈ Vetp(Nε)

⎫
⎬

⎭
.

The set Γ represents equal-treatment payoffs that are feasible or approximately feasi-
ble for some group, possibly large, described by the fixed distribution of player types
in the group. When (v − ε1) ∈ Vetp(Nε) we say that Nε approximately achieves v.

Footnote 6 continued
small groups, was introduced in Wooders (2008) for NTU games and in Wooders (1992) for TU games.
Our notion here of SGE is slightly more restrictive than that of Wooders (2008), but the difference is simply
for convenience.
7 This notion of ε-core is sometimes called the uniform ε-core.
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On the nonemptiness of approximate cores of large games 197

Note that given v ∈ Γ it may be that there does not exist a group N that can fully
achieve v, that is, there need not exist a group N such that v ∈ Vetp(N ); there will exist
such a group only if all gains to group formation can be exhausted by groups bounded
in size.8 Note also that, by SA, if (v − ε1) ∈ Vetp(Nε) then (v − ε1) ∈ Vetp(N ′

ε) for
every group N ′

ε containing a positive integer multiple of players of each type as Nε,
that is, for every group N such that pro(N ′

ε) = kpro(Nε) for any positive integer k.
Given v ∈ Γ , there are multiple groups with different distributions that can all

approximately achieve v. Thus, we define the correspondenceΠ : Γ ⇒ Δ as follows:

Π(v)
def=

⎧
⎨

⎩
s ∈ Δ ∩ Q

T
∣
∣
∣
∣

For each ε > 0
there exists a group Nε satisfying
pro(Nε)

|Nε | = s and (v − ε1) ∈ Vetp(Nε)

⎫
⎬

⎭
.

The setΠ(v) consists of those distributions s of player types for which v is approx-
imately feasible, that is, those distributions of player types that, in the definition of Γ

are required to exist. Note that the groups Nε may need to become arbitrarily large as
ε becomes small. Note also that nonemptiness of the set Π(v) follows immediately
from the definitions of Γ and Π .

The graph of the correspondence Π is denoted by G(Π) and defined by

G(Π) = {(v, s) ∈ Γ × (Δ ∩ Q
T ) | s ∈ Π(v)}.

Define the correspondence Π̃ : cl(Γ ) ⇒ Δ as follows: for each v ∈ cl(Γ )

Π̃(v)
def= {s ∈ Δ | ∃{(vn, sn)}n in G(Π) converging to (v, s)}.

We will show that, for each v ∈ cl(Γ ), the set Π̃(v) is nonempty and convex.
Let G(Π̃) denote the graph of the correspondence Π̃ . We will show that G(Π̃) is

the closure of G(Π) with respect to RT × Δ.
Our proof proceeds by showing that limiting payoffs vary continuously with the

distribution of player types. That is, we show that Π̃ is a continuous correspondence
from distributions of player types to limiting equal-treatment payoffs achievable, or
almost achievable, by large gameswith close distributions of players types.Wecan then
appeal to a fixed point theorem to obtain the result that there is a point v∗ ∈ ∂(cl(Γ ))

such that s∗ ∈ Π̃(v), which turns out to be sufficient to prove our main theorem.

4 The proof of the main result

Proposition 1 Let (v, s) ∈ R
T ×Δ. Let {(vn, sn)}n be a sequence in G(Π) converging

to (v, s) :
(1) If s ∈ Δ ∩ Q

T then (v, s) ∈ G(Π).

8 That is, unless a form of strict small group effectiveness is satisfied.
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198 N. Allouch, M. Wooders

(2) For any sequence of groups {N n}n satisfying limn→+∞ pro(N n)
|N n | = s ∈ intΔ (with

possibly pro(N n)
|N n | �= sn) and |N n| → ∞, for every ε > 0 there exists rε such that

for each n ≥ rε, it holds that (v − ε1) ∈ Vetp(N n).

Proof of Proposition 1 (1) The proof of (1) has two parts. In Part (a), given the
sequence {(vn, sn)}n converging to (v, s), using SGE, we determine a finite collection
of distributions of player types such that for any distribution s′ in the collection it holds
that (v − 2ε

3 1) ∈ Vetp(S′) for any group S′ with distrbution of types equal to s′. Let
M∗ denote this collection of profiles. We use this result in Part (b) where it is shown
that we can restrict attention to distributions in the collection M∗.

Part (a): Let us fix ε > 0. Since sn ∈ Π(vn) and thus has rational coefficients, there
exists a group N n

ε such that

pro(N n
ε )

|N n
ε | = sn and

(
vn − ε

3
1
)

∈ Vetp(N n
ε ).

Since V satisfies SGE, there is an integer τ( ε
3 ) and a partition P(N n

ε ) = (N n
ε,k)

K
k=1 of

N n
ε such that

Vetp(N n
ε ) ⊂

K⋂

k=1

Vetp(N n
ε,k) + ε

3
1,

with the property
∣
∣
∣N n

ε,k

∣
∣
∣ ≤ τ( ε

3 ) for each N n
ε,k ∈ P(N n

ε ). Since there is only a finite

number of profiles for groups N satisfying |N | ≤ τ( ε
3 ), we can denote their number

by a finite integer M and let p1, . . . , pm, . . . , pM be a list of these profiles. Thus, we
can write

pro(N n
ε ) =

M∑

m=1

βn
m pm,

where βn
m is the number of subsets N n

ε,k ∈ P(N n
ε ) such that pro(N n

ε,k) = pm . Since
0 ≤ βn

m ≤ |N n
ε |wecan assume,without loss of generality, that for eachm = 1, . . . , M ,

the sequence (
βn

m|N n
ε | ) converges to a real number β∗

m . Let

M∗ = {m | β∗
m > 0}.

Then, it holds that
s =

∑

m∈M∗
β∗

m pm . (1)

Thus, it holds that
supp(s) = ∪m∈M∗supp(pm). (2)

Moreover, by PSTS, for every group N such that pro(N ) = pm for some m ∈ M∗,
for all n sufficiently large, it holds that

(
vn − ε

3
1
)

∈ Vetp(N ) + ε

3
1.
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On the nonemptiness of approximate cores of large games 199

Rearranging terms, it follows that

(

vn − 2ε

3
1
)

∈ Vetp(N ).

Since Vetp(N ) is a closed set it holds that

(

v − 2ε

3
1
)

∈ Vetp(N ). (3)

Part (b): We next show that we can restrict attention to groups with profiles in the
setM∗. Since s ∈ Δ∩Q

T , there is an integer d such that ds has integer components.
In view of (2), for each n, the set

An =
{

l ∈ Z+ | lds ≥
∑

m∈M∗
βn

m pm

}

is nonempty. Let ln = inf An . We claim that

lim
n→∞

∑
m∈M∗ βn

m pm

‖lnds‖ = s.

Suppose not. Then, passing to a subsequence if necessary, we may assume that

lim
n→∞

∑
m∈M∗ βn

m pm

‖lnds‖ = lim
n→∞

∥
∥
∑

m∈M∗ βn
m pm

∥
∥

‖lnds‖
∑

m∈M∗ βn
m pm∥

∥
∑

m∈M∗ βn
m pm

∥
∥

= λ∗s

where λ∗ ∈ [0, 1[. Thus, since ln → ∞, it also holds that,

lim
n→∞

(ln − 1)ds − ∑
m∈M∗ βn

m pm

‖lnds‖ = (1 − λ∗)s

Hence, in view of (2), given δ ∈]0, 1 − λ∗[, for all n sufficiently large, it holds that

(ln − 1)ds − ∑
m∈M∗ βn

m pm

‖lnds‖ ≥ δs,

which implies that
(ln − 1)ds −

∑

m∈M∗
βn

m pm ≥ 0.

This implies that (ln − 1) ∈ An , which is a contradiction to ln being the infimum of
An .

Let N n,∗
ε ⊂ N n

ε be a group satisfying pro(N n,∗
ε ) = ∑

m∈M∗ βn
m pm Let also En,s

ε

be a group satisfying N n,∗
ε ⊂ En,s

ε and pro(En,s
ε ) = lnds. Given the construction of
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200 N. Allouch, M. Wooders

these groups, we have

lim
n→∞

∣
∣En,s

ε \N n,∗
ε

∣
∣

∣
∣N n,s

ε

∣
∣

= lim
n→∞

∥
∥lnds − ∑

m∈M∗ βn
m pm

∥
∥

‖lnds‖ = 0.

Moreover, by PSTS, SA and (3), it holds that

(

v − 2ε

3
1
)

∈ Vetp(N n,∗
ε ).

The equal-treatment payoff (v − 2ε
3 1) is feasible for all groups D in En,s

ε with
pro(D) = pro(N n,∗

ε ). Consider the payoff vector

((

v − 2ε

3
1
)

D
, 0En,s

ε \D

)

∈ V(En,s
ε ).

Take the average payoff vector over all such groups D, which yields an equal-treatment
payoff vector that belongs to V(En,s

ε ) since CONV.9 For sufficiently large n, this
average payoff vector will be greater than (v − ε1)En,s

ε
. Hence, it holds that

(v − ε1) ∈ Vetp(En,s
ε ),

which implies that s ∈ Π(v).
(2) In the following, we will show that for any sequence of groups {N n}n with a

limiting distribution of player types given by s, for all n sufficiently large, N n can be
approximated (in terms of numbers of players of each type) by groups with profiles in
the collection (pm)m∈M∗ , which, in turn, implies that N n can approximately achieve
the payoff v.

We require the following theorem about projections on a convex set.

4.1 Projection theorem

Let C be a nonempty closed convex set of RT .

(i) For any x ∈ R
T there exists a unique vector PC (x) = arg min

z∈C
‖z − x‖2 called

the projection of x on C .10

(ii) The vector PC (x) can be defined as the only vector with the property

(y − PC (x)) · (x − PC (x)) ≤ 0, ∀y ∈ C .

9 This approach to the “leftovers problem”was initiated inWooders (1983). Details of this sort of argument
are contained therein.
10 As usual, ‖·‖2 denote the Euclidian norm.
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On the nonemptiness of approximate cores of large games 201

Let {N n}n be an arbitrary sequence of groups satisfying limn→+∞ pro(N n)
|N n | = s

(with possibly pro(N n)
|N n | �= sn) and |N n| → ∞. Then, taking ε (and other definitions) as

given in the proof of Part (a) in (1) above, let c(N n) denote the projection of pro(N n)

on the convex cone C spanned by (pm)m∈M∗ . First, note that since C is a convex cone
spanned by (pm)m∈M∗ it follows from (1) that s ∈ C. We claim that

lim
n→+∞

c(N n)

|N n| = s.

Suppose not. Then, passing to a subsequence if necessary, we may assume that

lim
n→+∞

c(N n)

|N n| = s′ �= s.

Since s ∈ C and C is a convex cone, it holds that for each n

(
∣
∣N n

∣
∣s − c(N n)) · (pro(N n) − c(N n)) ≤ 0,

or equivalently, (

s − c(N n)

|N n|
)

·
(
pro(N n)

|N n| − c(N n)

|N n|
)

≤ 0.

Taking the limit it holds that
∥
∥s − s′∥∥2

2 ≤ 0, which is a contradiction.
For each n, let Fn = {θ ∈ [0, 1] | pro(N n) − θ c(N n) ≥ 0}, which is nonempty

since it contains 0. Let θn = max Fn . We claim that limn→+∞ θn = 1. Suppose not.
Then passing to a subsequence if necessary, we may assume that limn→+∞ θn = θ∗
for some θ∗ ∈ [0, 1[. Hence,

lim
n→+∞

pro(N n) − (θn+1)
2 c(N n)

|N n| = (1 − θ∗)
2

s.

Then, since (2) and s ∈ intΔ, for some δ > 0, for all n sufficiently large, it holds that

pro(N n) − (θn+1)
2 c(N n)

|N n| ≥ δs,

which implies that (θn+1)
2 ∈ Fn . This is a contradiction since, for all n sufficiently

large, it holds that θn <
(θn+1)

2 .
Note that we can write c(N n) = ∑

m∈M∗ ξn
m pm , for some real numbers ξn

m ∈ R+.
Let

Integer(θnc(N n)) =
∑

m∈M∗
[θnξn

m]pm,
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where, for any u ∈ R+, [u] denotes the integer part of u. Let N̂ n ⊂ N n be a group
satisfying pro(N̂ n) = Integer(θnc(N n)). Note that

lim
n→∞

|N n\N̂ n|
|N n| = lim

n→∞
‖pro(N n) − θnc(N n)‖ + ‖θnc(N n) − Integer(θnc(N n))‖

|N n|
≤ 0 + lim

n→∞
‖∑

m∈M∗ pm‖
|N n| = 0.

Moreover, from SA and (3) it follows that for a large enough n

(

v − 2ε

3
1
)

∈ Vetp(N̂ n).

Therefore, by CONV, one could subsidize the left-overs (N n\N̂ n) so that

(v − ε1) ∈ Vetp(N n).

��
Proposition 2 There is a bound B ∈ R+ such that for all (v, s) ∈ G(Π), for each
t ∈ supp(s) it holds that vt < B.

Proof of Proposition 2 Taking again ε (and other definitions) as given in the proof
of Part (a) in (1) above, for each m ∈ {1, . . . , M}, let Nm denote an arbitrary group
satisfying

pro(Nm) = pm,

Bm = max
t∈supp(pm )

v∈Vetp(Nm )

vt ,

and

B = max
m=1,...,M

Bm + 2

3
ε.

Clearly, B is well defined and finite. Let t ∈ supp(s). From (2) it follows that t ∈
supp(pm) for some m ∈ M∗, which in view of PSTS and (3), implies that vt ≤ B. ��

Recall that
G(Π) = {(v, s) ∈ Γ × (Δ ∩ Q

T ) | s ∈ Π(v)}.
Obviously, given that the domain of G(Π) isΓ ×(Δ∩Q

T ), there are some converging
sequences {(vn, sn)}n with each element in the sequence contained in the graph but
the limits of the sequences are not. Given that having a closed graph is crucial to be
able to use a fixed point argument, we get around this difficulty by constructing an
auxiliary correspondence with a closed graph.

Define the correspondence Π̃ : cl(Γ ) ⇒ Δ as follows: for each v ∈ cl(Γ )

Π̃(v)
def= {s ∈ Δ | ∃{(vn, sn)}n in G(Π) converging to (v, s)}.
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LetG(Π̃) denote the graph of the correspondence Π̃ . The following proposition shows
that G(Π̃) is the closure of G(Π) with respect to RT × Δ.

Proposition 3 G(Π̃) = cl(G(Π)).

Proof of Proposition 3 Indeed, G(Π̃) = cl(G(Π)) holds from the definition of Π̃ .
��

Proposition 4 For each v ∈ cl(Γ ) the set Π̃(v) is nonempty and convex.

Proof of Proposition 4 Let v ∈ cl(Γ ). Then, there exists a sequence {vn}n ∈ Γ that
converges to v. This implies that there exists a sequence {(vn, sn)}n satisfying sn ∈ Δ

and sn ∈ Π(vn). Since Δ is compact, passing to a subsequence if necessary, we may
assume that limn→+∞ sn = s ∈ Δ. Hence, s ∈ Π̃(v). Hence, Π̃(v) is nonempty.

Now, let s1, s2 ∈ Π̃(v) and α ∈ [0, 1]. Then for each ε > 0, there exists two
sequences {(vn

1 , sn
1 )}n and {(vn

2 , sn
2 )}n converging to, respectively, (v, s1) and (v, s2)

such that sn
1 ∈ Π(vn

1 ) and sn
2 ∈ Π(vn

2 ), for each n. This implies that vn
1 , v

n
2 ∈ Γ .

Then, there exists two groups N 1
ε and N 2

ε satisfying

pro(N 1
ε )

∣
∣N 1

ε

∣
∣

=sn
1 ,

pro(N 2
ε )

∣
∣N 2

ε

∣
∣

=sn
2 , (vn

1−ε1) ∈ Vetp(N 1
ε ), and (vn

2−ε1) ∈ Vetp(N 2
ε ).

Let vn
1,2 = (inf{(vn

1 )1, (v
n
2 )1}, . . . , inf{(vn

1 )T , (vn
2 )T }). Note that vn

1,2 also converges
to v. Moreover, given that Vetp(N 1

ε ) and Vetp(N 2
ε ) are comprehensive from below it

holds that
(vn

1,2 − ε1) ∈ Vetp(N 1
ε ) ∩ Vetp(N 2

ε ). (4)

Let αn = an

bn , where an , bn ∈ Z+ and an < bn , be a sequence of rationals converging
to α. Let N̂ 1

ε , N̂ 2
ε ⊂ N such that N̂ 1

ε ∩ N̂ 2
ε = ∅,

pro(N̂ 1
ε ) = an

∣
∣
∣N 2

ε

∣
∣
∣ pro(N 1

ε ), and pro(N̂ 2
ε ) = (bn − an)

∣
∣
∣N 1

ε

∣
∣
∣ pro(N 2

ε ).

By SA and (4), it holds that

(vn
1,2 − ε1)N̂1

ε ∪N̂2
ε

∈
((

V(N̂ 1
ε ) × R

N̂2
ε

) ⋂ (
R

N̂1
ε × V(N̂ 2

ε )
))

⊂ V(N̂ 1
ε ∪ N̂ 2

ε ),

which implies
(vn

1,2 − ε1) ∈ Vetp(N̂ 1
ε ∪ N̂ 2

ε ).

Moreover, note that

pro(N̂ 1
ε ∪ N̂ 2

ε )
∣
∣N̂ 1

ε ∪ N̂ 2
ε

∣
∣

= an
∣
∣N 2

ε

∣
∣ pro(N 1

ε ) + (bn − an)
∣
∣N 1

ε

∣
∣ pro(N 2

ε )

bn
∣
∣N 1

ε

∣
∣
∣
∣N 2

ε

∣
∣

= αnsn
1 +(1−αn)sn

2 .

Hence
(vn

1,2, α
nsn

1 + (1 − αn)sn
2 ) ∈ G(Π),
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which, by taking the limit, implies that

(v, αs1 + (1 − α)s2) ∈ G(Π̃).

Thus, Π̃(v) is convex. ��
The set cl(Γ ) is a nonempty, closed, and comprehensive from below subset of RT .

Note that the set cl(Γ ) is a proper set of RT . Define W as the set

W
def= cl(Γ ) ∩ [−∞, B + 1]T ,

where B is defined in Proposition 2. A point v ∈ W belongs to the boundary of W if
and only if either v ∈ ∂(cl(Γ )) or has vt = B + 1 for some t = 1, . . . , T .

Proposition 5 There is a homeomorphism h from the space Δ to the space ∂W ∩
[−1,+∞[T such that h(s)t = −1 whenever s ∈ Δ and t ∈ T \supp(s).
Proof of Proposition 5 Let s ∈ Δ be given. Let R be the ray emanating from −1 =
(−1, . . . ,−1) in the direction of s. Thus, every pointρ of R is of the formρ = −1+σ s
for some nonnegative real number σ . It is clear that, since W is closed, comprehensive
from below, and bounded from above, R intersects the boundary of W at exactly one
point.

To see that R does intersect ∂W , observe that −1 belongs to both the set W and the
ray R. Thus, the set R1 = R ∩ W is nonempty. Furthermore, there is a ρ ∈ R such that
ρt ≥ B + 1 for some t ∈ supp(s), so that ρ lies outside the interior of W . Therefore,
the set R2 = R ∩ (RT \ intW ) is nonempty. Thus, R1 and R2 are nonempty closed
subsets of R whose union is R. By connectedness of R, the set R1 ∩ R2 = R ∩ ∂W
is nonempty.

To show that the intersection of R and W is a singleton, suppose that the set R∩∂W
contains two distinct points v and v. Thus, v = −1 + σ s and v = −1 + σ s for some
nonnegative reals σ and σ . Without loss of generality, we can assume that σ < σ .
For each t ∈ supp(s), we have vt < vt < B + 1. For each t ∈ T \supp(s) (possibly
empty), we then have vt = vt = −1. Note that since v ∈ cl(Γ ), it is easy to check
that

v̂t =
{

vt if t ∈ supp(s)
0 otherwise

also belongs cl(Γ ). Since vt < v̂t for each t ∈ T , it follows that v is in the interior of
cl(Γ ). Moreover, since vt < B +1 for each t ∈ T , it follows from comprehensiveness
that v is in the interior of W , which is a contradiction.

Define the map h from Δ to ∂W ∩ [−1,+∞[T by letting h(s) be the unique point
in the intersection of the ray R and the set ∂W . We now demonstrate that h has an
inverse. Let g denote the map from ∂W ∩ [−1,+∞[T to Δ given by the equation

g(v) = v + 1
∑

t∈T (vt + 1)
.
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The map g is well defined since the point −1 lies in the interior of W . It is easy to see
that g is indeed the inverse of h, that is, h◦g and g◦h are equal to the respective identity
maps. Clearly, g is a continuous map. Furthermore, because its domain is compact and
the codomain is Hausdorff, it carries closed sets to closed sets. Therefore, h is also a
continuous map. This proves that h is a homeomorphism. ��

The rest of the proof relies on the Talman and Yang (2009) version of the well-
known Fan’s coincidence theorem, as stated below. That theorem addresses a domain
consisting of a nonempty and convex subset Y of RN . For ease of translation of
the theorem to our context, we restrict the domain to be the simplex in R

T . Let
N (Δ, s) = {z ∈ R

N | (s − s′)�z ≥ 0 for each s′ ∈ Δ} denote the normal cone of the
set Δ at the point s. A zero point of a correspondence Φ : Δ ⇒ R

T is a point s of Δ

such that Φ(y) contains the zero point.
For ease in reading, we state the following result using the simplex rather than an

arbitrary compact convex set.

Theorem (Talman and Yang) Let Φ : Δ ⇒ R
T be a correspondence with nonempty

convex values having a compact graph. Suppose that for each s ∈ Δ and for each
z ∈ N (Δ, s) there exists a φ ∈ Φ(s) such that z�φ ≤ 0. Then, Φ has a zero point.

Proposition 6 There exists v∗ ∈ ∂(cl(Γ )) such that s∗ ∈ Π̃(v∗).

Proof of Proposition 6 Define the correspondence Φ : Δ ⇒ R
T by letting Φ(s) =

Π̃(h(s)) − {s∗} for each s ∈ Δ. Clearly, the correspondence Φ has nonempty and
convex values. Its graph is closed, because h is continuous and the graph of Π̃ is
closed. Since Φ maps a compact set Δ into a compact set Δ − {s∗}, its graph is, in
fact, a compact set.

We now need to verify that the conditions of the above-fixed point theorem are
satisfied. Let s ∈ Δ be given and let v denote the vector h(s). Then, the normal cone
of Δ at s is the set

N (Δ, s) =
{

z ∈ R
T

∣
∣ z = a1 + ∑

t∈T \supp(s) ltet , a ∈ R, lt ≤ 0
}

,

where (e1, . . . , eT ) is the standard canonical basis of RT . Let z ∈ N (Δ, s) be given.
If supp(s) = T , then every z ∈ N (Δ, s) is proportional to the vector 1. In this case,
since Φ(s) ⊂ Δ − {s∗}, the equality z�φ = 0 holds for each φ ∈ Φ(s). If T \supp(s)
is nonempty, then, vt = h(s)t = −1, for each t ∈ T \supp(s). Let ŝ ∈ Δ defined as
follows

ŝ =
{

ŝt = s∗
t + 1

|T \supp(s)|
∑

j∈supp(s) s∗
j if t ∈ T \supp(s),

0 otherwise

and {(ŝn)}n be a sequence in Δ∩Q
T such that limn→+∞ ŝn = ŝ and ŝn

t = 0, for each
t ∈ supp(s). Let N n be a group satisfying

pro(N n)

|N n| = ŝn .
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Since vN n = −1N n ∈ intV(N n) it holds that ŝn ∈ Π(v) for each n, which implies
ŝ ∈ Π̃(v) = Π̃(h(s)). The vector φ = ŝ − s∗ is therefore an element of Φ(s). Since
0 ≤ φt for each t ∈ T \supp(s), the inequality z�φ ≤ 0 holds for each z ∈ N (Δ, s).
By Fan’s coincidence theorem, the correspondence Φ has a zero point, say s̃. Letting
v∗ be equal to h(s̃), we see that v∗ ∈ ∂W and s∗ ∈ Π̃(v∗). Since s∗ ∈ intΔ it
follows from (taking the limit in) Proposition 2 that v∗

t < B + 1 for each t and thus
v∗ ∈ ∂(cl(Γ )). ��

Finally, Proposition 6, together with (2) in Proposition 1, implies that for every
ε > 0 there exists rε such that for each n ≥ rε, (v∗ − ε1)N n is in the ε-core of
(N n, V ). ��

5 Some relationships to the literature

To relate our work to the literature, we begin with Wooders (1983). We note that the
results of that paper have played a role inmuch subsequent work on cooperative games
with many players (see, for example, Wooders (1994) and Kovalenkov and Wooders
(2001, 2003) and on economies with clubs or local public goods (see, for example,
Wooders 1997; Conley and Wooders 2001; Allouch and Wooders 2008).

Before proceeding we require another definition:

5.1 Per capita boundedness (PCB)

The correspondence V satisfies per capita boundedness if there is a constant K such
that if v ∈ Vetp(N ) then vt ≤ K for each t such that (t, q) ∈ N for some q.

Note that PCB is less restrictive than SGE, but when there are many players of each
type then the two concepts are closely related. Following is a restatement of the main
theorem ofWooders (1983) using the notation of this paper and Lemmas inWooders’s
proof.

Theorem (Wooders 1983) Assume V satisfies SA, PSTS, PCB, and CONV. Let s ∈
intΔ ∩ Q

T and let {(N n, V )}n be a sequence of games such that |N n| → ∞ and, for
each n,

pro(N n)

|N n| = s.

Then, there exists v∗ ∈ R
T satisfying the property: for every ε > 0 there is an integer

rε such that for each n ≥ rε, (v∗ − ε1)N n is in the ε-core of (N n, V ).

Note that s can be any vector in intΔ ∩ Q
T . Thus, for sequences of games where

all games in the sequence have the same percentage of players of each type, the main
theorem of Wooders (1983) implies the result of this paper. The proof, however, is
quite different. In some sense,Wooders (1983) approaches the limiting payoff v∗ “from
below” while the current paper starts with defining a limiting set for every possible
player profile. Essentially, Wooders’s proof shows that the limit of the set of equal-
treatment payoff vectors achievable by a sequence of games with a fixed distribution
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of player types is the same as the limit of those equal-treatment games achievable by
the associated sequence of balanced cover games. In contrast, we look directly at the
limiting sets. We also show that the sets of equal-treatment payoffs vary continuously
with as the distribution of player types varies. Our result also extends that of Wooders
(1983) since she treats a fixed distribution of player types while we treat all sequences
of growing games converging to the same limiting distribution of player types; this
difference is reflected in the part of our proof using the projection theorem.

Our work in this paper also relates to Wooders (2008) which considers a compact
metric space of player types and demonstrates nonemptiness of approximate cores for
all sufficiently large (but finite) games derived from the structure. That paper uses
somewhat different conditions than the current paper and has a different purpose—
namely to relax the finite-type assumption, so we will not discuss the relationships in
any detail.

6 Conclusions

We present an extension of the main result ofWooders (1983). In work in progress, we
use our approach in this paper to relate the Aumann-core (with coalitions of positive
measure) and the f -core of Kaneko and Wooders (1986) and Kaneko and Wooders
(1996)11 and show their equivalence for games with many players. We also establish
the equivalence of core outcomes for othermodels allowing “large” players (or positive
measure).

In conclusion, we note that the theory of cooperative games satisfying either per
capita boundedness or small group effectiveness has found application in club theory
and the theory of local public goods (c.f., Allouch and Wooders (2008) and refer-
ences therein), in the study of market games (Wooders 1994), and recently, in security
exchanges (Faias and Luque 2016). All these papers advance the notion that large
cooperative games, with a compact metric space of player types, are market games.
The general theories of approximate cores of games with many players can also be
used to obtain a special case of a non-emptiness result due to Gersbach et al. (2015)
on household formation. While we require convexity of payoff sets, if we had instead
allowed a “left-over” set of players as in Shubik and Wooders (1983) or Kovalenkov
and Wooders (2003), then a result analogous to that of this paper could be immedi-
ately applied to matching markets, as in the celebrated volume of Roth and Sotomayer
(1990) and in multiple extensions of matching markets such as Legros and Newman
(2002). Another application, in progress, uses SGE in the study of economies with
incomplete information (see Kamishiro et al. 2016). In view of the multiplicity of
applications already in the literature, we anticipate that our work in this paper will
help in the development of yet further applications.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

11 See also Hammond et al. (1989).
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and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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