70 research outputs found

    Geometries for Possible Kinematics

    Full text link
    The algebras for all possible Lorentzian and Euclidean kinematics with so(3)\frak{so}(3) isotropy except static ones are re-classified. The geometries for algebras are presented by contraction approach. The relations among the geometries are revealed. Almost all geometries fall into pairs. There exists t↔1/(ν2t)t \leftrightarrow 1/(\nu^2t) correspondence in each pair. In the viewpoint of differential geometry, there are only 9 geometries, which have right signature and geometrical spatial isotropy. They are 3 relativistic geometries, 3 absolute-time geometries, and 3 absolute-space geometries.Comment: 40 pages, 7 figure

    Possible contractions of quantum orthogonal groups

    Full text link
    Possible contractions of quantum orthogonal groups which correspond to different choices of primitive elements of Hopf algebra are considered and all allowed contractions in Cayley--Klein scheme are obtained. Quantum deformations of kinematical groups have been investigated and have shown that quantum analog of (complex) Galilei group G(1,3) do not exist in our scheme.Comment: 10 pages, Latex. Report given at XXIII Int. Colloquium on Group Theoretical Methods in Physics, July 31- August 5, 2000, Dubna (Russia

    Newton-Hooke spacetimes, Hpp-waves and the cosmological constant

    Full text link
    We show explicitly how the Newton-Hooke groups act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes and show how these may be obtained from a null reduction of 5-dimensional homogeneous pp-wave Lorentzian spacetimes. This allows us to realize the Newton-Hooke groups and their Bargmann type central extensions as subgroups of the isometry groups of the pp-wave spacetimes. The extended Schrodinger type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model.Comment: 21 page

    Superalgebra for M-theory on a pp-wave

    Get PDF
    We study the superalgebra of the M-theory on a fully supersymmetric pp-wave. We identify the algebra as the special unitary Lie superalgebra, su(2|4;2,0) or su(2|4;2,4), and analyze its root structure. We discuss the typical and atypical representations deriving the typicality condition explicitly in terms of the energy and other four quantum numbers. We classify the BPS multiplets preserving 4,8,12,16 real supercharges and obtain the corresponding spectrum. We show that in the BPS multiplet either the lowest energy floor is an su(2) singlet or the highest energy floor is an su(4) singlet.Comment: 22 pages, 1 figure; Section on examples revised, Refs added; Typ

    Extensions, expansions, Lie algebra cohomology and enlarged superspaces

    Full text link
    After briefly reviewing the methods that allow us to derive consistently new Lie (super)algebras from given ones, we consider enlarged superspaces and superalgebras, their relevance and some possible applications.Comment: 9 pages. Invited talk delivered at the EU RTN Workshop, Copenhagen, Sep. 15-19 and at the Argonne Workshop on Branes and Generalized Dynamics, Oct. 20-24, 2003. Only change: wrong number of a reference correcte

    Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry

    Full text link
    A new method to obtain trigonometry for the real spaces of constant curvature and metric of any (even degenerate) signature is presented. The method encapsulates trigonometry for all these spaces into a single basic trigonometric group equation. This brings to its logical end the idea of an absolute trigonometry, and provides equations which hold true for the nine two-dimensional spaces of constant curvature and any signature. This family of spaces includes both relativistic and non-relativistic homogeneous spacetimes; therefore a complete discussion of trigonometry in the six de Sitter, minkowskian, Newton--Hooke and galilean spacetimes follow as particular instances of the general approach. Any equation previously known for the three classical riemannian spaces also has a version for the remaining six spacetimes; in most cases these equations are new. Distinctive traits of the method are universality and self-duality: every equation is meaningful for the nine spaces at once, and displays explicitly invariance under a duality transformation relating the nine spaces. The derivation of the single basic trigonometric equation at group level, its translation to a set of equations (cosine, sine and dual cosine laws) and the natural apparition of angular and lateral excesses, area and coarea are explicitly discussed in detail. The exposition also aims to introduce the main ideas of this direct group theoretical way to trigonometry, and may well provide a path to systematically study trigonometry for any homogeneous symmetric space.Comment: 51 pages, LaTe

    Linear derivative Cartan formulation of General Relativity

    Full text link
    Beside diffeomorphism invariance also manifest SO(3,1) local Lorentz invariance is implemented in a formulation of Einstein Gravity (with or without cosmological term) in terms of initially completely independent vielbein and spin connection variables and auxiliary two-form fields. In the systematic study of all possible embeddings of Einstein gravity into that formulation with auxiliary fields, the introduction of a ``bi-complex'' algebra possesses crucial technical advantages. Certain components of the new two-form fields directly provide canonical momenta for spatial components of all Cartan variables, whereas the remaining ones act as Lagrange multipliers for a large number of constraints, some of which have been proposed already in different, less radical approaches. The time-like components of the Cartan variables play that role for the Lorentz constraints and others associated to the vierbein fields. Although also some ternary ones appear, we show that relations exist between these constraints, and how the Lagrange multipliers are to be determined to take care of second class ones. We believe that our formulation of standard Einstein gravity as a gauge theory with consistent local Poincare algebra is superior to earlier similar attempts.Comment: more corrected typos, added reference

    Rotations associated with Lorentz boosts

    Get PDF
    It is possible to associate two angles with two successive non-collinear Lorentz boosts. If one boost is applied after the initial boost, the result is the final boost preceded by a rotation called the Wigner rotation. The other rotation is associated with Wigner's O(3)-like little group. These two angles are shown to be different. However, it is shown that the sum of these two rotation angles is equal to the angle between the initial and final boosts. This relation is studied for both low-speed and high-speed limits. Furthermore, it is noted that the two-by-two matrices which are under the responsibility of other branches of physics can be interpreted in terms of the transformations of the Lorentz group, or vice versa. Classical ray optics is mentioned as a case in point.Comment: LaTeX, 16 Pages, 4 epsfigure

    Kaigorodov spaces and their Penrose limits

    Get PDF
    Kaigorodov spaces arise, after spherical compactification, as near horizon limits of M2, M5, and D3-branes with a particular pp-wave propagating in a world volume direction. We show that the uncompactified near horizon configurations K\times S are solutions of D=11 or D=10 IIB supergravity which correspond to perturbed versions of their AdS \times S analogues. We derive the Penrose-Gueven limits of the Kaigorodov space and the total spaces and analyse their symmetries. An Inonu-Wigner contraction of the Lie algebra is shown to occur, although there is a symmetry enhancement. We compare the results to the maximally supersymmetric CW spaces found as limits of AdS\times S spacetimes: the initial gravitational perturbation on the brane and its near horizon geometry remains after taking non-trivial Penrose limits, but seems to decouple. One particuliar limit yields a time-dependent homogeneous plane-wave background whose string theory is solvable, while in the other cases we find inhomogeneous backgrounds.Comment: latex2e, 24 page

    Galilei invariant theories. I. Constructions of indecomposable finite-dimensional representations of the homogeneous Galilei group: directly and via contractions

    Full text link
    All indecomposable finite-dimensional representations of the homogeneous Galilei group which when restricted to the rotation subgroup are decomposed to spin 0, 1/2 and 1 representations are constructed and classified. These representations are also obtained via contractions of the corresponding representations of the Lorentz group. Finally the obtained representations are used to derive a general Pauli anomalous interaction term and Darwin and spin-orbit couplings of a Galilean particle interacting with an external electric field.Comment: 23 pages, 2 table
    • …
    corecore