6 research outputs found

    The influence of copper on the properties of ductile iron for producing centrifugally cast rolls

    Get PDF
    An intentional change in material properties is an important condition for castings production. It is one way how to meet the casting requirements of how to adapt the material properties to the operating conditions. Centrifugally cast rolls are multi-layer rollers, castings. The working layer of the barrel is called the "shell" and the body of the roll and the necks rolls are called "core". The article deals with the influence of the properties of the core iron. Earlier laboratory experiments were primary analysed for metallographic analysis and mechanical properties. These data were compared back to the experiments. The results of these laboratory working were later applied in the operating conditions of the roll foundry Vitkovitcke slevarny, spol. s r.o. The spun cast roll produced with the applied metallurgical processing change was supplied to the hot strip mill. There were monitored the positive effect of the change of the metallurgical process of the production of the core iron on the useful properties of the centrifugally cast roll. The experiment was done in order to increase the mechanical properties of ductile pearlite ductile iron. The copper in these core iron material increases the hardness and strength primarily.Web of Science18310610

    New types of membranes for electrolyzer hydrogen - oxygen

    Get PDF
    Tato práce se zabývá výrobou vodíku a kyslíku elektrolýzou. Cílem práce bylo proměřit různé typy membrán a vybrat nejlepší pro použití v elektrolyzéru vodík - kyslík. Vlastnosti membrán byly ověřeny v laboratorním elektrolyzéru při krátkodobém i dlouhodobém provozu. Vzniklé plyny z elektrolyzéru byly následně měřeny na plynovém chromatografu, aby se zjistila čistota vyrobeného vodíku. Současně jsou také testovány různé koncentrace KOH elektrolytu a jejich vliv na účinnost elektrolyzéru.This work deals with the production of hydrogen and oxygen by electrolysis. Aims of this thesis are to measure different types of membranes and choose the best for use in elektrolyzer for hydrogen and oxygen production. Properties of membranes were tested in the laboratory electrolyzer in the short and long operation. The emerging gases from elektrolyzer were also tested on a gas chromatograph to determine the purity of produced hydrogen. At the same time are also tested different concentrations of KOH elektrolyte and the effect of concentrations on efficiency of electrolyzer.

    Pea (Pisum sativum L.) in the Genomic Era

    Get PDF
    Pea (Pisum sativum L.) was the original model organism used in Mendel’s discovery (1866) of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species. Although the size and repetitive nature of the pea genome has so far restricted its sequencing, comprehensive genomic and post genomic resources already exist. These include BAC libraries, several types of molecular marker sets, both transcriptome and proteome datasets and mutant populations for reverse genetics. The availability of the full genome sequences of three legume species has offered significant opportunities for genome wide comparison revealing synteny and co-linearity to pea. A combination of a candidate gene and colinearity approach has successfully led to the identification of genes underlying agronomically important traits including virus resistances and plant architecture. Some of this knowledge has already been applied to marker assisted selection (MAS) programs, increasing precision and shortening the breeding cycle. Yet, complete translation of marker discovery to pea breeding is still to be achieved. Molecular analysis of pea collections has shown that although substantial variation is present within the cultivated genepool, wild material offers the possibility to incorporate novel traits that may have been inadvertently eliminated. Association mapping analysis of diverse pea germplasm promises to identify genetic variation related to desirable agronomic traits, which are historically difficult to breed for in a traditional manner. The availability of high throughput ‘omics’ methodologies offers great promise for the development of novel, highly accurate selective breeding tools for improved pea genotypes that are sustainable under current and future climates and farming systems.P.S. acknowledges financial support from the Ministry of Education of Czech Republic ME1006, ME10062, LA08011 and the Bioversity International AEGIS LOA 10/048 projects. J.M. acknowledges financial support from the Academy of Sciences of the Czech Republic (AVOZ50510513). T.D.W. acknowledges financial support from the Saskatchewan Pulse Growers and the Saskatchewan Ministry of Agriculture. C.J.C. acknowledges financial support from the United States Department of Agricultural, Agricultural Research Service

    Pea (Pisum sativum L.) in the Genomic Era

    Get PDF
    Pea (Pisum sativum L.) was the original model organism used in Mendel’s discovery (1866) of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species. Although the size and repetitive nature of the pea genome has so far restricted its sequencing, comprehensive genomic and post genomic resources already exist. These include BAC libraries, several types of molecular marker sets, both transcriptome and proteome datasets and mutant populations for reverse genetics. The availability of the full genome sequences of three legume species has offered significant opportunities for genome wide comparison revealing synteny and co-linearity to pea. A combination of a candidate gene and colinearity approach has successfully led to the identification of genes underlying agronomically important traits including virus resistances and plant architecture. Some of this knowledge has already been applied to marker assisted selection (MAS) programs, increasing precision and shortening the breeding cycle. Yet, complete translation of marker discovery to pea breeding is still to be achieved. Molecular analysis of pea collections has shown that although substantial variation is present within the cultivated genepool, wild material offers the possibility to incorporate novel traits that may have been inadvertently eliminated. Association mapping analysis of diverse pea germplasm promises to identify genetic variation related to desirable agronomic traits, which are historically difficult to breed for in a traditional manner. The availability of high throughput ‘omics’ methodologies offers great promise for the development of novel, highly accurate selective breeding tools for improved pea genotypes that are sustainable under current and future climates and farming systems
    corecore