10 research outputs found

    A substituted sulfonamide and its Co (II), Cu (II), and Zn (II) complexes as potential antifungal agents

    Get PDF
    A sulfonamide 1-tosyl-1-H-benzo(d)imidazol-2-amine (TBZA) and three new complexes of Co(II), Cu(II), and Zn(II) have been synthesized. The compounds have been characterized by elemental analyses, FTIR, 1H, and 13C-NMR spectroscopy. The structure of the TBZA, and its Co(II) and Cu(II) complexes, was determined by X-ray diffraction methods. TBZA and its Co(II) complex crystallize in the triclinic P-1 space group, while the Cu(II) complex crystallizes in the monoclinic P21/c space group. Antifungal activity was screened against eight pathogenic yeasts: Candida albicans (DMic 972576), Candida krusei (DMic 951705), Candida glabrata (DMic 982882), Candida tropicalis (DMic 982884), Candida dubliniensis (DMic 93695), Candida guilliermondii (DMic 021150), Cryptococcus neoformans (ATCC 24067), and Cryptococcus gattii (ATCC MYA-4561). Results on the inhibition of various human (h) CAs, hCA I, II, IV, VII, IX, and XII, and pathogenic beta and gamma CAs are also reported.Facultad de Ciencias ExactasInstituto de Física La PlataCentro de Química Inorgánic

    Polyproline II Helix Conformation in a Proline-Rich Environment: A Theoretical Study

    Get PDF
    Interest centers here on whether a polyproline II helix can propagate through adjacent non-proline residues, and on shedding light on recent experimental observations suggesting the presence of significant PP(II) structure in a short alanine-based peptide with no proline in the sequence. For this purpose, we explored the formation of polyproline II helices in proline-rich peptides with the sequences Ac-(Pro)(3)-X-(Pro)(3)-Gly-Tyr-NH(2), with X = Pro (PPP), Ala (PAP), Gln (PQP), Gly (PGP), and Val (PVP), and Ac-(Pro)(3)-Ala-Ala-(Pro)(3)-Gly-Tyr-NH(2) (PAAP), by using a theoretical approach that includes a solvent effect as well as cis ↔ trans isomerization of the peptide groups and puckering conformations of the pyrrolidine ring of the proline residues. Since (13)C chemical shifts have proven to be useful for identifying secondary-structure preferences in proteins and peptides, and because values of the dihedral angles (φ,ψ) are the main determinants of their magnitudes, we have, therefore, computed the Boltzmann-averaged (13)C chemical shifts for the guest residues in the PXP peptide (X = Pro, Ala, Gln, Gly, and Val) with a combination of approaches, involving molecular mechanics, statistical mechanics, and quantum mechanics. In addition, an improved procedure was used to carry out the conformational searches and to compute the solvent polarization effects faster and more accurately than in previous work. The current theoretical work and additional experimental evidence show that, in short proline-rich peptides, alanine decreases the polyproline II helix content. In particular, the theoretical evidence accumulated in this work calls into question the proposal that alanine has a strong preference to adopt conformations in the polyproline II region of the Ramachandran map

    Luminescent Lanthanide Metal Organic Frameworks as Chemosensing Platforms towards Agrochemicals and Cations

    Get PDF
    Since the first studies of luminescent sensors based on metal organic frameworks (MOFs) about ten years ago, there has been an increased interest in the development of specific sensors towards cations, anions, explosives, small molecules, solvents, etc. However, the detection of toxic compounds related to agro-industry and nuclear activity is noticeably scarce or even non-existent. In this work, we report the synthesis and characterization of luminescent lanthanide-based MOFs (Ln-MOFs) with diverse crystalline architectures obtained by solvothermal methods. The luminescent properties of the lanthanides, and the hypersensitive transitions of Eu3+ (5D0→7F2) and Tb3+ (5D4→7F5) intrinsically found in the obtained MOFs in particular, were evaluated and employed as chemical sensors for agrochemical and cationic species. The limit of detection (LOD) of Tb-PSA MOFs (PSA = 2-phenylsuccinate) was 2.9 ppm for [UO22+] and 5.6 ppm for [Cu2+]. The variations of the 4f–4f spectral lines and the quenching/enhancement effects of the Ln-MOFs in the presence of the analytes were fully analyzed and discussed in terms of a combinatorial “host–guest” vibrational and “in-silico” interaction studies

    New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design

    Get PDF
    We report here two new small-size peptides acting as modulators of the -site APP cleaving enzyme 1 (BACE1) exosite. Ac-YPYFDPL-NH2 and Ac-YPYDIPL-NH2 displayed a moderate but significant inhibitory effect on BACE1. These peptides were obtained from a molecular modeling study. By combining MD simulations with ab initio and DFT calculations, a simple and generally applicable procedure to evaluate the binding energies of small-size peptides interacting with the exosite of the BACE1 is reported here. The structural aspects obtained for the different complexes were analyzed providing a clear picture about the binding interactions of these peptides. These interactions have been investigated within the framework of the density functional theory and the quantum theory of atoms in molecules using a reduced model. Although the approach used here was traditionally applied to the study of noncovalent interactions in small molecules complexes in gas phase, we show, through in this work, that this methodology is also a very powerful tool for the study of biomolecular complexes, providing a very detailed description of the binding event of peptides modulators at the exosite of BACE1
    corecore