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ABSTRACT Interest centers here on whether a polyproline II helix can propagate through adjacent non-proline residues, and
on shedding light on recent experimental observations suggesting the presence of significant PPII structure in a short alanine-
based peptide with no proline in the sequence. For this purpose, we explored the formation of polyproline II helices in proline-
rich peptides with the sequences Ac-(Pro)3-X-(Pro)3-Gly-Tyr-NH2, with X ¼ Pro (PPP), Ala (PAP), Gln (PQP), Gly (PGP), and
Val (PVP), and Ac-(Pro)3-Ala-Ala-(Pro)3-Gly-Tyr-NH2 (PAAP), by using a theoretical approach that includes a solvent effect as
well as cis $ trans isomerization of the peptide groups and puckering conformations of the pyrrolidine ring of the proline
residues. Since 13C chemical shifts have proven to be useful for identifying secondary-structure preferences in proteins and
peptides, and because values of the dihedral angles (f,c) are the main determinants of their magnitudes, we have, therefore,
computed the Boltzmann-averaged 13C chemical shifts for the guest residues in the PXP peptide (X ¼ Pro, Ala, Gln, Gly, and
Val) with a combination of approaches, involving molecular mechanics, statistical mechanics, and quantum mechanics. In
addition, an improved procedure was used to carry out the conformational searches and to compute the solvent polarization
effects faster and more accurately than in previous work. The current theoretical work and additional experimental evidence
show that, in short proline-rich peptides, alanine decreases the polyproline II helix content. In particular, the theoretical evidence
accumulated in this work calls into question the proposal that alanine has a strong preference to adopt conformations in the
polyproline II region of the Ramachandran map.

INTRODUCTION

A nonstructured conformation of a polypeptide, the so-called

statistical-coil state, corresponds to an energy-weighted

ensemble of conformations in which a single residue can

occupy any of the regions of the Ramachandran map

(Ramachandran et al., 1963) with a certain probability

specified by the Boltzmann distribution (Vila et al., 2002).

This definition at the residue level is no longer valid for

oligopeptides or polypeptides in which interresidue inter-

actions introduce additional energetic contributions. Long-

range and sequence-dependent interactions render the

statistical-coil definition inapplicable for a polypeptide, i.e.,

a nonstructured state of an oligopeptide or polypeptide is

then a collective property, and corresponds to an energy-

weighted ensemble of conformations in which the sequence

can occupy any accessible region in the conformational

space.

Whether or not the most populated region occupied by

oligopeptides or polypeptides in a nonstructured state is the

left-handed polyproline II (PPII) conformation has been the

object of much discussion, as in an early review by Woody

(1992), and in numerous recent articles and reviews

(Creamer, 1998; Sreerama and Woody, 1999; Stapley and

Creamer, 1999; Kelly et al., 2001; Rucker and Creamer,

2002; Shi et al., 2002a,b; Pappu and Rose, 2002). Among the

experimental studies, Kelly et al. (2001) examined the

conformational preferences of some naturally occurring

amino acids and used circular dichroism (CD) to study the

left-handed PPII-helix. In particular, Kelly and co-workers

used a host-guest technique based on the sequences Ac-

(Pro)3-X-(Pro)3-Gly-Tyr-NH2, with X ¼ Pro (PPP), Ala

(PAP), Gln (PQP), Gly (PGP), Leu (PLP), Met (PMP), Ile

(PIP), Val (PVP), Asn (PNP), and Ac-(Pro)3-Ala-Ala-(Pro)3-

Gly-Tyr-NH2 (PAAP) to derive an intrinsic propensity scale

for the PPII-helical conformation, and to examine whether the

helix is propagated through two adjacent alanines. Their

experiments showed that the decrease of the PPII helix

content in going from PPP to PAP to PAAP is nonlinear with

respect to the number of alanines, i.e., the difference between

PAP and PAAP (9%) was greater than that between PPP and

PAP (3%). Despite this nonlinearity, Kelly and co-workers

suggested possible reasons that could influence the confor-

mational preferences of alanine residues when they are

flanked by prolines; based on these possible reasons, they

suggest that 1), PAAP still possesses significant PPII
character; 2), alanine has a relatively high intrinsic pro-

pensity to adopt this structure; and 3), the PPII helix can

propagate through two adjacent non-proline residues.

Theoretical studies of proline-rich peptides were carried

out recently by Creamer (1998), who simulated a series
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of peptides with the sequences Ac-Ala-(Pro)3-X-(Pro)3-

Ala-NMe (with X ¼ Ala, Val, Leu, Phe, and Gly). These

simulations employed the following approximations: 1),

a hard sphere potential with a united-atom approximation,

i.e., the hydrogens attached to carbon atoms were not treated

explicitly; 2), excluded-volume effects with no attractive

components, i.e., a hard-sphere potential with only two pos-

sible energy states—zero when there are no atomic overlaps,

or infinite energy when atoms overlap; 3), no solvent was

included in the calculations; 4), only the trans-conformation

of proline was considered, i.e., neither proline cis $ trans
isomerization nor ring puckering were considered. The

amino acid sequence used by Creamer (1998) was similar,

but not identical, to the one studied by Kelly et al (2001). Of

all the approximations used by Creamer (1998), the neglect

of both solvent effects and cis $ trans isomerization should

be emphasized, since it is well known that 1), solvent effects

play an important role in conformational transitions in

polypeptides and proteins, in particular in polyprolines; i.e.,

there is both theoretical (Tanaka and Scheraga, 1975a,b) and

experimental (Steinberg, et al., 1960; Gornick et al., 1964;

Mandelkern 1967; Strassmair et al., 1969) evidence that

solvent effects plays a dominant role influencing the form I
! form II transition in poly(L-proline) and 2), that the cis$
trans isomerization around the X-Pro peptide groups plays

a key role in the rate-determining steps of protein folding

(Brandts et al., 1975). The cis and trans forms of proline

peptide groups are almost isoenergetic, with the trans form
being slightly more favorable, and small peptides exhibit

a mixture of cis and trans forms (Wüthrich, et al., 1974;

Zimmerman and Scheraga, 1976); hence, consideration of

the cis-trans conversion cannot be neglected in any

theoretical analysis of proline-rich peptides. Moreover, these

properties of the peptide group are important not only in

oligopeptides and globular proteins but also in homopoly-

mers of proline, i.e., polyproline I is all cis in a right-handed

helical conformation whereas PPII is all trans in a left-

handed helical conformation, depending on the solvent

(Steinberg, et al., 1960).

The all-trans conformation lies near f ¼ �788, c ¼ 1468
(Cowan and McGavin, 1955), which falls in the F region

defined by Zimmerman et al. (1977) as �1108 # f # �408
and 1308 # c # 1808 in the map of Ramachandran et al.

(1963). The nearby E region encompasses the b-pleated-
sheet structure (Arnott et al., 1967). We assign a PPII
conformation to any residue in the F region. The CD

spectrum of the PPP peptide exhibits a maximum at 228 nm

and a minimum at 205 nm (Kelly et al., 2001), characteristic

of a PPII helix formed by a polyproline peptide in aqueous

solution (Woody, 1992). Significantly smaller molar ellip-

ticity may indicate shorter helices and/or larger deviations

from the long PPII helix conformation (Ma et al., 2001). The

corresponding CD spectrum of a b-sheet structure typically
has positive and negative bands at ;195 and 218 nm,

respectively (Sreerama and Woody, 2003).

In this article, we have carried out a detailed theoretical

study of the oligopeptides studied by Kelly et al. (2001) to 1),

understand whether a polyproline II helix can propagate

through adjacent non-proline residues and 2), shed light on

the recent experimental observations by Shi et al. (2002a,b),

showing the presence of significant PPII structure in a short

alanine-based peptide in a non-prolyl environment.

METHODS

The general procedure

In this work, we generated ensembles of conformations of the oligopeptides

studied by Kelly et al. (2001), and computed their Boltzmann-averaged

chemical shifts to provide a test of the conformational preferences predicted

in our simulations. The conformations were generated at pH 7 with the

electrostatically driven Monte Carlo (EDMC) method (Ripoll and Scheraga,

1988; Ripoll et al., 1996). An all-atom representation of the chain was used

with the ECEPP/3 force field (Momany et al., 1975; Némethy et al., 1983,

1992; Sippl et al., 1984) and explicit consideration of 1), cis $ trans
isomerization of the peptide group for proline residues; 2), both up (U ) and

down (D) puckering conformations of the pyrrolidine ring, which pertain to

the (f ¼ �53.08 and x1 ¼ �28.18) and (f ¼ �68.88 and x1 ¼ 27.48)
positions, respectively, of the Cg atom of the proline residue; and 3),

conformational entropy, by following the approach of G�oo and Scheraga

(1969) and Zimmerman et al. (1977) as implemented in EDMC.

To investigate the role of the solvent in the conformational preference for

the helical PPII conformation, alternative forms of the potential energy

function were used to evaluate the total free energy. Gas-phase (GP)

representations, i.e., the ECEPP/3 potential, with omission of solvent effects,

were used. These gas-phase simulations provide a basis for comparison with

the two solvation models used here, namely, a gas-phase potential

represented by ECEPP/3 with a solvent-accessible surface area model, or

GPSAS (Vila et al., 1991) to represent the interaction with the solvent; and

a gas-phase potential represented by ECEPP/3 combined with a fast

multigrid boundary element (MBE), i.e., GPSP, method to account for the

solvation free energy and solvent polarization effects as well as the

equilibrium binding of protons and its dependence on environmental

conditions (Vorobjev et al., 1994, 1995; Vorobjev and Scheraga, 1997).

These approaches provide a solution to the problem of ionization equilibria

(Bashford and Karplus, 1990; Yang et al., 1993; Yang and Honig, 1993;

Gilson, 1993; Beroza et al., 1995; Vila et al., 1998).

Evaluation of the total free energy

Three alternative forms were used to compute the total free energy as

a function of the coordinates rp; viz., a gas phase potential (GP),

EðrpÞ ¼ EintðrpÞ1FvibðrpÞ; (1)

where Eint(rp) is the internal conformational energy of the molecule in the

absence of solvent, assumed to correspond to the ECEPP/3 energy (Némethy

et al., 1992) of the neutral molecule, and Fvib(rp) is the conformational

entropy contribution. The contribution from Fvib(rp) to the total free energy

has been treated by a harmonic vibrational approximation (G�oo and Scheraga,
1969; Zimmerman et al., 1977) for each conformation obtained by using the

ECEPP/3 potential function.

The next form is a gas phase potential plus a solvent-accessible surface

area model (GPSAS),

EðrpÞ ¼ EintðrpÞ1FvibðrpÞ1FsasðrpÞ; (2)

where Fsas(rp) represents the solvation free energy as defined by Vila et al.

(1991), and the third form is a gas phase potential combined with the MBE

method (GPSP),
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Eðrp; pHÞ ¼ EintðrpÞ1FvibðrpÞ1FcavðrpÞ1FsolvðrpÞ
1Finzðrp; pHÞ; ð3Þ

where Fcav(rp) is the free energy associated with the process of cavity

creation when transferring the molecule from the gas phase into the aqueous

solution; Fsolv(rp) is the free energy associated with the polarization of the

aqueous solution; and Finz(rp, pH) is the free energy associated with the

change in the state of ionization of the ionizable groups due to the transfer of

the molecule from the gas phase to the solvent, at a fixed pH value.

Fcav(rp) describes the free energy of creation of a cavity to accommodate

a zero-charge peptide molecule, i.e., with all partial atomic charges set to

zero. As shown previously (Sitkoff et al., 1994; Simonson and Brünger,

1994), Fcav(rp) can be considered as the free energy of transfer of a nonpolar
molecule from the gas phase to water. This free energy is proportional to the

solvent-accessible surface area of the molecule. The term Fsolv(rp) is

obtained by using the fast MBE method, and Finz(rp, pH) is calculated by

using general multisite titration formalism (Bashford and Karplus, 1990;

Yang et al., 1993; Vorobjev et al., 1994).

Conformational search

A full search for the global minimum of the function represented by Eq. 3

requires the energy minimization of thousands of conformations, which is

beyond current computational capabilities. For this reason, a protocol that

produces a reasonable sampling of the conformational space, defined by

E(rp, pH) without minimizing this particular function, is used (Vila et al.,

2003). The protocol that we previously used (Ripoll et al., 1996; Vila et al.,

2002, 2003) involved energy minimization of an approximate form of E(rp,
pH), viz., (Eapprox(rp)), given by Eint(rp), by using the secant unconstrained

minimization solver algorithm (Gay, 1983). In this work, Eapprox(rp) is

represented by

EapproxðrpÞ ¼ EintðrpÞ1FGBðrpÞ; (4)

where FGB(rp) represents the pairwise Generalized Born (GB) solvation

model of Hawkins et al. (1996), from the laboratory of D. A. Case, as

implemented by Ghosh et al. (2002). This implementation of the pairwise

GB solvation model includes analytical derivatives with respect to atomic

coordinates, keeping the effective Born radii fixed.

The term FGB(rp) is a good representation of the free energy of solvation
Fsolv(rp) used in Eq. 3, since this approximate solution of the Poisson-

Boltzmann, as given by the GB model, has been shown to give results that

are close to the exact solution (Tsui and Case, 2001; Onufriev et al., 2002).

Consequently, the new protocol is expected to provide better results than the

procedure used previously (Vila et al., 1998, 2001, 2002), i.e., when

Eapprox(rp) ¼ Eint(rp).
It should be pointed out that, during the calculation with the GPSP

approach, the total free energy, E(rp, pH), of the conformations is always

computed by Eq. 3, i.e., by computing the solvent polarization effects with

the fast MBE method, even though the conformational search was carried

out with Eq. 4, i.e., with the GB potential.

Clustering analysis

Classification of the accepted conformations listed in Table 1 was carried out

with the clustering procedure used by Vila et al. (2003) to study statistical-

coil peptides in solution, i.e., through a minimal tree (the minimal spanning

tree method described by Ripoll et al., 1999), and then the minimal tree was

partitioned in terms of a specified root mean-square deviation (RMSD)

cutoff, leading to a given number of families. The families resulting from the

RMSD clustering procedure were ranked in increasing order according to

their total free energy, given by Eq. 1. For each family, we evaluated both the

number of conformations belonging to that family and the set of dihedral

angles of the lowest-energy conformation. We refer to the lowest-energy

conformation of a family as the leading member. The Boltzmann averages

over all the families for a given peptide were computed by using only the

leading member of each family. A cutoff of 2 Å RMSD between all heavy

atoms in the peptides PXP and PAAP, with no cutoff in the energy, was used

during the clustering procedure. As shown previously (Vila et al., 2003),

higher-number clusters, i.e., these with higher energy, will not make any

significant contribution to the Boltzmann average because the leading

members of such families are much higher in energy than the leading

members of lower-number clustered families. For this reason, we chose

a cutoff in the total number of cluster families for each amino acid X; i.e., we

considered only those families that represent[95% of the total number of

accepted conformations. The reduced number of ensembles of conformations

that meet this criterion are listed in parentheses in the last column of Table 1.

As can be seen from Table 1 (column 5), the number of families for each

amino acid ranges from 105 (glycine) to 16 (proline). These upper and lower

limits in the number of family clusters found for the peptides PXP indicate

that the presence of proline as a guest residue, i.e., X¼ Pro, results in a much

more extremely rigid conformation than the one that corresponds to X ¼
Gly, no doubt because glycine is the more conformationally unrestricted

residue of the 20 naturally occurring amino acids.

Quantum-chemical calculations of the 13C
chemical shift

The conformations of the PXP and PAAP molecules, employed for

calculating the 13C shielding, corresponded to the leading members of each

family. These conformations were not energy-minimized at the quantum

chemical level of theory because such geometry-optimized structures lead

only to very small additional effects on the computed shielding (Sun et al.,

2002; Vila et al., 2002). However, these conformations represent energy-

minimized structures obtained with the geometries defined by the ECCEP/3

force field.

All 13C shielding calculations were carried out by using a hybrid density

functional level of theory (Parr and Yang, 1989) with the gauge-independent

atomic orbitals procedure (Wolinski et al., 1990) as implemented in the

Gaussian 98 program (Frisch et al., 1998). The selected (hybrid density

functional level of theory) B3LYP methods employed two different

exchange-correlation functionals—Becke’s three-parameter functional

(Becke, 1993) in combination with nonlocal correlation provided by the

Lee-Yang-Parr expression (Lee et al., 1988), which contains both local and

nonlocal terms. This functional has proven to be a very good choice to predict
13C magnetic shielding tensors as proposed by Cheeseman et al. (1996).

Since NMR shielding tensors are predominantly local properties, it is

possible to obtain theoretical shielding values of good quality by using large

basis sets located only on the atoms whose shifts are of interest, whereas the

rest of the atoms in the molecule are given more modest bases (Chesnut and

Moore, 1989). This is called the locally dense basis approach, and its use

enables us to minimize the length of the chemical-shift calculations while

maintaining the accuracy of the results. This approach has been revised by

Laws et al. (1995), who concluded that the results correlate very well with

calculations using a very large basis set, although the time is significantly

reduced. In the present work, the X and the Ala residues in the PXP and

PAAP peptides, respectively, were treated with a 6�3111G(2d,p) locally

dense basis set, whereas the remaining residues in the molecule were

described by a 3�21G basis set. These basis-set notations refer to those of

Pople and co-workers (Hehre et al., 1986), as implemented in the Gaussian

98 program (Frisch et al., 1998). Recently, by using the locally dense

approximation, Sun et al. (2002) found good agreement between theory and

experiment, making its use very attractive for treating large systems such as

the peptides studied in this work. The reason for such good agreement

between theory and experiment, by using the locally dense approximation,

resides in the physical basis of the chemical shift effect, i.e., as noted by

Chesnut and Moore (1989): ‘‘the chemical shift is sensitive to the electron
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distribution near the resonant nucleus and therefore requires a good

description of that distribution in the vicinity of the resonant nucleus and

a lesser description further away. . .’’.
To enable us to compare calculated and experimental values of chemical

shifts (d), the calculated 13C chemical shielding isotropic tensors (siso) were

converted to a tetramethylsilane (TMS) shift scale by using the equation

d ¼ 182.48 � siso, where the 182.48 value represents the 13C shielding of

TMS obtained by using B3LYP/6-311 1 G(2d,p)//B3LYP/6 � 31G(d)

geometry. The corresponding experimental value for the 13C shielding of

TMS is sTMS,exp ¼ 188.1 ppm (Jameson and Jameson, 1987).

To test the locally dense approach used here, we compared 13C chemical

shifts calculated recently (Vila et al., 2002) for the unblocked tetrapeptide

GGXA by using a uniform basis set, i.e., 6�3111G(2d,p) over all residues,

with the ones obtained using the locally dense approximation, i.e., in which

the X residue is treated with a 6�3111G(2d,p) locally dense basis set,

whereas the remaining residues in the unblocked tetrapeptide were described

by a 3�21G basis set. Fig. 1 shows the statistical correlation of the 13C

chemical shifts when the guest residue X in the GGXA peptide is alanine.

The nine 13C chemical shifts plotted in Fig. 1 for the GGAA peptide

correspond to the leading members of each family obtained after clustering

the statistical-coil ensemble as described by Vila et al. (2002). Fig. 1, a and

b, shows good agreement between both basis sets with a correlation

coefficient of R ¼ 0.990 and 0.997 for the 13Ca and 13Cb chemical shifts,

respectively. These results provide strong support for the hypothesis of

Chesnut and Moore (1989) that the 13C chemical shifts are predominantly

a local property.

RESULTS AND DISCUSSION

Taking into account the experimental helix contents of PPII
reported by Kelly et al. (2001), and their corresponding

experimental error, i.e., 62% for the PPP, PAP, PQP, PGP,

PLP, PMP, and PNP peptides, and61% for the PIP and PVP

peptides, we arranged these sequences in three different

groups, viz.: 1), PPP, PAP, and PQP with an ;66% helix

content of PPII; 2), PGP, PLP, PMP, and PNP with an;57%

helix content of PPII; and 3), PIP and PVP with an ;50%

helix content of PPII. Peptide PAAP, with an ;54 6 2%

helix content of PPII, cannot be included in any of these

groups because it contains a different number of residues.

We are particularly interested in the residues with higher

PPII propensity and, hence, simulations were carried out for

PPP, PAP, PQP, and one representative sequence of each of

the remaining two groups, viz., PGP and PVP, respectively.

TABLE 1 Summary of the EDMC runs

Peptide sequence*

Number of

energy-minimized

conformationsy

Number of

accepted

conformationsz

Zimmerman code

of the lowest

energy conformation§
Number of

cluster families{

PPPk 135,222 2049 FFFFFFADD 77

PPP** 35,360 1000 FFFFFFADA 16

PPPyy 54,871 1091 FFFFFFAAD 23 (8)

PAPk 129,533 1798 FFCDFFADD 80

PAP** 124,383 2000 FFADFFADA 26

PAPyy 53,675 1243 FFFF*FFAAF 45 (4)

PAAPk 154,277 1875 FFAAFFFCD*D 99

PAAP** 147,092 2000 FFAADFFADA 46

PAAPyy 107,148 2363 FFAA*A*FFACG 74 (3)

PQPk 178,308 2154 FFAEFFAA*D 90

PQP** 122,601 2078 FFADFFADA 23

PQPyy 66,747 1774 FFAA*FFFAF 72 (7)

PGPk 162,930 2345 FFFD*FFAGF 105

PGP** 145,665 3000 FFADFFADA 30

PGPyy 64,634 1478 FFADFFAAA 46 (5)

PVPk 184,106 1921 FFCDFFADD 86

PVP** 127,073 2629 FFADFFADA 29

PVPyy 114,613 3128 FFAAFFACA 45 (9)

*PXP and PXXP represent the X residue in the sequence Ac-PPPXPPPGY-NH2 (for X ¼ Pro, Ala, Gln, Gly, and Val) and Ac-PPPXXPPPGY-NH2 (for

XX ¼ AlaAla), respectively.
yThese values correspond to the total number of generated conformations for the runs with three different force fields as explained in Methods and footnotes

k, **, and yy, using the procedure described in Methods.
zAccording to the Metropolis criterion.
§For the leading member of family 1. Conformations are classified in terms of the regions of the f�c Ramachandran (Ramachandran et al., 1963) map

in which they occur (Zimmerman et al., 1977). On the left-hand half of the map (f\ 08), the regions are defined as A–G; on the right-hand half of the map

(f $ 08), the regions are defined by inversion of the left-hand half around the center of the map, and an asterisk is appended to the letters. The conformation

of the guest residues are underlined. One of the alanines of PAAP in the PPII region (Zimmerman code F) is shown in boldface.
{Total number of families after a minimal-tree cluster analysis of all accepted conformations, i.e., those listed in column 3 within a cutoff of 2 Å RMSD over

all heavy atoms in the PXP and PAAP peptides, with no cutoff in energy. The number of cluster families containing [95% of the total accepted

conformations is given in parentheses only for those peptides for which the Boltzmann-averaged 13C chemical shifts were computed as explained in Methods.
kThe calculations were carried out by using a GP potential, as explained in Methods.

**The calculations were carried out by using a GPSAS potential, as explained in Methods.
yyThe calculations were carried out at pH 7 at t ¼ 258C by using the GPSP potential, as described in Methods. The value of 10.10 was adopted as the

pKo
a for the ionizable group of the Tyr residue, as an average from the data of Perrin (1972).
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In addition, simulations were carried out for PAAP because

1), this represents a sequence with a different alanine content

from that of PAP; 2), the sequence containing two alanines

will better reflect the possibility of propagation of the PPII
helix conformation through more than one alanine; and 3),

there is experimental evidence (Kelly et al., 2001) showing

that the decrease of helix content from PPP to PAP to PAAP

is nonlinear with respect to the number of alanines.

In this study, we carried out EDMC runs for the six

different polypeptides sequences shown in Table 1. In all the

sequences, the end groups were acetyl (CH3CO-) and amino

(-NH2). For each of the runs described in Table 1,[35,000

conformations were generated, following the procedure

described in the Methods section. For each sequence, three

different runs were carried out, viz., 1), without consider-

ation of solvent effects by using a gas-phase potential as

described by ECEPP/3; 2), with explicit consideration of

solvent effects with a solvent-accessible surface area model

(using the SRFOPT set of solvation parameters described by

Vila et al., 1991); and 3), by explicit consideration of solvent

polarization effects from a solution of the Poisson-Boltz-

mann equation by using the fast MBE method developed by

Vorobjev and Scheraga (1997).

Conformational analysis of PPP

Rucker and Creamer (2002) considered that PPII is an en-

ergetically favorable option for oligopeptides because all

backbone polar groups are well-solvated in this conforma-

tion in water, thus compensating for the lack of intra-

molecular hydrogen bonds. The implicit assumption in this

statement is that a polyproline peptide must be all trans and,
of course, any non-proline residue in this conformation must

be trans. Therefore, the characteristic ratio (C) should be

�20 at 308C, according to the experimentally determined

value for polyproline in an organic solvent in which the

polypeptide is in the all-trans conformation (Mattice and

Mandelkern, 1971). However, as shown by Mattice and

Mandelkern, the characteristic ratio is C � 14 in an aqueous

solvent at 308C. In water, the polyproline II (all-trans)
conformation is favored over the polyproline I (all-cis)
conformation (Steinberg, et al., 1960). Based on these

observations, and by using a statistical analysis of randomly-

coiled poly(L-proline), Tanaka and Scheraga (1975c)

concluded that such a significant change in the characteristic

ratio is due to a mixture of trans and cis conformations in

a PPII helix. These authors found that close agreement with

the experimental results of Mattice and Mandelkern (1971) is

obtained when the characteristic ratio is computed by

assuming that 5% of the proline peptide bonds are in the

cis conformation. In other words, the introduction of a small

amount of cis peptide groups into a predominantly trans
chain in poly(L-proline) can influence its characteristic ratio

considerably. In line with this finding, the lowest-energy

conformation (�235 Kcal/mol) computed for the PPP

peptide with the GPSP potential at pH 7, shown in Fig. 2,

has an end-to-end distance of ;8 Å, which is shorter than

a conformation that is higher in energy (�226 Kcal/mol)

with all its peptide bonds in the trans state and with an end-

to-end distance of ;24 Å, as shown in Fig. 3. Nevertheless,

the computed Boltzmann-averaged PPII helix content for the

PPP peptide, by using all the accepted conformations listed

in the third column of Table 1, computed with GP and GPSP

(66.7%) or with the GPSAS (68.0%) potentials, respectively,

are in agreement with the 66.0 6 2% determined

experimentally by Kelly et al. (2001), as shown in Table 2.

To test the adequacy of our approach for computing

FIGURE 1 (a) Correlation between the 13Ca chemical shifts for the guest

alanine residue in the GGAA peptide computed by using a uniform basis set

(Vila et al., 2002) and those computed by using the locally dense basis set

approach (Chesnut and Moore, 1989) as explained in Methods. R ¼ 0.990;

slope of 0.95 for the correlation line. (b) Same as a for the 13Cb chemical

shifts. R ¼ 0.997; slope of 1.09 for the correlation line.
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averages, we recomputed the Boltzmann-averaged PPII helix

content in the PXP and PAAP peptide by using both all the

accepted conformations listed in the third column of Table 1

and only the leading members, weighted by the population,

of the corresponding cluster listed in the fifth column of

Table 1, respectively. The values obtained are included in

the fifth column of Table 2, with and without brackets,

respectively. Very good agreement exists between both

approaches with a correlation coefficient of R ¼ 0.96 and

a slope of 1.02 for the correlation line.

Inspection of the lowest-energy conformation of the PPP

peptide obtained from the simulations, carried out using the

GP potential, shows that this conformation is similar to that

displayed in Fig. 2. The lowest-energy conformations for

the simulations with the GP and GPSP potentials have in

common a mixture of trans and cis isomeric states of the

peptide bonds, as shown in Table 2. The mixture of cis and
trans peptide bonds, obtained with both the GP and GPSP

potential functions, is consistent with the results obtained

by Tanaka and Scheraga (1974), showing that nucleation of

cis $ trans isomerization may occur not only at the termini

but also in the middle of the chain, and also that cis residues
may occur randomly within the poly(L-proline) chain. The

existence of mixed conformations of trans and cis peptide

bonds in oligomers of L-proline has been observed in NMR

experiments (Deber et al., 1970). According to all the

accumulated theoretical and experimental evidence, the view

that the optimal conformation of a polyproline-rich peptide

is an ideal or canonical PPII helix in water is an over-

simplification that results from lack of consideration of the

cis $ trans isomerization of the peptide group for proline

residues.

Polyproline helix content of PXP and PAAP

In Table 3, we have listed all the Boltzmann-averaged

values for the 13C chemical shifts for residues X and Ala in

the peptides PXP and PAAP, respectively. Since the main

factor determining 13Ca and 13Cb chemical shifts is the set

of backbone dihedral angles (f,c), with minor influence

from the side-chain dihedral angles x (Spera and Bax,

1991; Iwadate et al., 1999; Wishart and Case, 2001; Vila,

et al., 2003), comparison between the predicted and

measured values for the 13C chemical shifts will provide

a test of the conformational preferences predicted in our

simulations.

The 13C chemical shifts have been used to distinguish

between cis and trans X-Pro peptide bonds in small peptides

(Dorman and Bovey, 1973). For this reason, we compared

the Boltzmann-averaged 13Cb and 13Cg chemical shifts of

residue X ¼ PRO in the PXP peptide with the maximum and

minimum values, obtained from an analysis of the 13Cb and
13Cg chemical shifts of 1033 proline residues from 304

proteins for the X-Pro peptide bond in the cis and trans
conformations by Schubert et al. (2002). Our calculated 13Cb

and 13Cg Boltzmann-averaged chemical shift values (30.2

ppm and 21.3 ppm, respectively) for proline in the PPP

peptide are consistent with a peptide bond in the trans
conformation since 1), they are greater than the minimum

observed values (26.3 ppm and 19.3 ppm, respectively) for

a peptide bond in the trans conformation, but 2), they are

lower than the minimum observed values (30.7 ppm and

22.1 ppm, respectively) for a peptide bond in the cis
conformation (Schubert et al., 2002). From this comparison

between the computed Boltzmann-averaged values for the
13Cb and 13Cg chemical shifts for the PPP peptide and the

maximum and minimum experimental values observed by

Schubert et al. (2002), we can conclude that the guest

(proline) residue is in the trans conformation in the PPP

peptide. This result is consistent with the peptide-bond

conformation shown in Table 2, for the simulations carried

out with the GPSP potential.

FIGURE 3 Stereo view of the leading member of family 2 of the peptide

PPP, after clustering the accepted conformations shown in Table 1. The

conformations of the peptide bonds for the proline residues of this structure

are TTTTTTT, computed with the GPSP potential.

FIGURE 2 Stereo view of the leading member of family 1 of the peptide

PPP, after clustering the accepted conformations shown in Table 1. The

conformations of the peptide bonds for the proline residues of this structure

are CTCTCTT, computed with the GPSP potential, as shown in Table 2.
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As shown in Table 2 for simulations carried out in water,

all guest residues in the PXP peptide, when X is not proline,
do not show a conformational preference for the F region of

the Zimmermann map. We can conclude that, in the presence

of water, there is no propagation of the PPII conformational

preference into the preceding (guest) residue for all the PXP

sequences, when X is not proline, contrary to the proposal of

Kelly et al. (2001). The lack of propagation through non-

proline residues, observed in our simulations, is due to the

low propensity for the PPII conformation of any of the tested

residues, arising (among others) from consideration of

hydration effects. In other words, the strong tendency

attributed to some amino acids for the PPII region, and the

widely-held belief that such residues in proline-rich regions

will adopt this structure predominantly, will have to be

revised.

As shown for the underlined and boldfaced conformations

in Table 1, column 4, a proline residue of PAAP seems to

have a significant influence only on the preceding member

(alanine) in the sequence (in forcing such a non-proline

residue to adopt the PPII conformation) in the simulations

carried out for this peptide using the GP potential energy

function. However, this influence disappears when water

is included in the simulation. Alanine does not seem to

propagate the PPII helix conformation when it is surrounded

by a proline-rich environment, in disagreement with the

suggestion of Kelly et al. (2001).

Does Ala prefer the PPII conformation?

The PPII helix gives rise to a CD spectrum that is remarkably

similar to that of unfolded proteins. This similarity has been

used to justify the hypothesis that unfolded proteins possess

considerable PPII helix, rather than b, content. Since the

original observation of Tiffany and Krimm (1968), a plethora

of experiments on proline-rich sequences have been

reported, attempting to validate this hypothesis. However,

many of these experimental results involve contradictions

TABLE 2 Conformational analysis

Peptide sequence*

Zimmerman code of

the lowest energy

conformationy
Conformation of

pyrrolidine ringz
Peptide bond

conformation§ PPII content
{ (%)

PPPk FFFFFFADD DDD D DDD TTC C TCT 66.7 [66.7] (66.0 6 2)

PPP** FFFFFFADA DDD D DDD TTT T TTT 68.0 [66.7] (66.0 6 2)

PPPyy FFFFFFAAD DDD D DDU CTC T CTT 66.7 [66.7] (66.0 6 2)

PAPk FFCDFFADD UUD - DDD TTT - TCT 44.4 [44.4] (63.0 6 2)

PAP** FFADFFADA DUD - DDD TTT - TTT 46.2 [44.4] (63.0 6 2)

PAPyy FFFF*FFAAF DDU - DDU CTT - TTT 66.7 [66.7] (63.0 6 2)

PAAPk FFAAFFFCD*D DDD - - DDU TTT - - CTT 50.6 [50.0] (54.0 6 2)

PAAP** FFAADFFADA DDD - - DDD TTT - - TTT 40.5 [40.0] (54.0 6 2)

PAAPyy FFAA*A*FFACG DUD - - DDU CTT - - CTT 40.0 [40.0] (54.0 6 2)

PQPk FFAEFFAA*D DUD - DDD TTT - TCT 44.4 [44.5] (65.0 6 2)

PQP** FFADFFADA DUD - DDD TTT - TTT 46.6 [44.4] (65.0 6 2)

PQPyy FFAA*FFFAF DDU - UUU TTT - CTT 66.7 [66.7] (65.0 6 2)

PGPk FFFD*FFAGF DDU - DDD TTT - TCT 54.3 [66.5] (58.0 6 2)

PGP** FFADFFADA DUD - DDD TTT - TTT 46.6 [44.4] (58.0 6 2)

PGPyy FFADFFAAA UUU - DDU TTT - CTT 44.4 [44.4] (58.0 6 2)

PVPk FFCDFFADD DUD - DDD TTT - TCT 44.8 [44.6] (49.0 6 1)

PVP** FFADFFADA DUD - DDU TTT - TTT 46.0 [44.4] (49.0 6 1)

PVPyy FFAAFFACA UDU - UDD TTT - TCT 33.3 [33.3] (49.0 6 1)

*PXP and PXXP represent the X residue in the sequence Ac-PPPXPPPGY-NH2 (for X ¼ Pro, Ala, Gln, Gly, and Val) and Ac-PPPXXPPPGY-NH2 (for

XX ¼ AlaAla), respectively. A dash is used in columns 3 and 4 to denote that the guest residue is not proline, and hence no results are displayed for this

residue in these columns.
yConformations are classified in terms of the regions of the f�c Ramachandran (Ramachandran et al., 1963) map in which they occur (Zimmerman et al.,

1977). On the left-hand half of the map (f\ 08), the regions are defined as A–G; on the right-hand half of the map (f $ 08), the regions are defined by

inversion of the left-hand half around the center of the map, and an asterisk is appended to the letters.
zThe designation of U (up) and D (down) pertain to the (f ¼ �53.08 and x1 ¼ �28.18) and (f ¼ �68.88 and x1 ¼ 27.48) positions, respectively, of the Cg

atom.
§C and T are used to designate the cis and trans states of the peptide bond only for prolines. All the non-prolines are trans.
{For each peptide in this table, we show 1), the Boltzmann-averaged PPII helix content computed using all accepted conformations listed in the third column

of Table 1; 2), within brackets, the Boltzmann-averaged PPII helix content computed by using only the leading members, weighted by the population, of the

corresponding cluster listed in the fifth column of Table 1; and 3), in parentheses, the corresponding experimental values (Kelly et al., 2001). Very good

agreement for the computed Boltzmann-averaged PPII helix content exists between both procedures 1 and 2, i.e., with a correlation coefficient of R ¼ 0.96

and slope of 1.02 for the correlation line. In these calculations, it is assumed that only residues in the F region contribute to the PPII helix content.
kThe calculations were carried out by using a GP potential, as explained in Methods.

**The calculations were carried by using a GPSAS potential, as explained in Methods.
yyThe calculations were carried out at pH 7 at t ¼ 258C by using the GPSP potential, as described in Methods. The value of 10.10 was adopted as the pKo

a

for the ionizable group of the Tyr residue, as an average from the data of Perrin (1972).
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that have not been properly addressed. As an example, Shi

et al. (2002a) studied the oligopeptide Ac-ZZ-(Ala)7-OO-

NH2 [ZAO] (where Z denotes diaminobutyric acid and O is

ornithine), with no proline in the sequence, by using CD and

NMR experiments. Based mainly on J-vicinal coupling

constants (and the corresponding f-values) derived from the

NMR experiments, the data were interpreted as placing all

seven alanine residues in the PPII region, even at high

temperature. If this were the case, the CD spectra of Shi et al.

(2002a) should be similar to those obtained by Rucker and

Creamer (2002) for the peptide Ac-(Pro)7-Gly-Tyr-NH2

(P7). However, they are not (see Fig. 5 of Shi et al., 2002a,

and Fig. 1 of Rucker and Creamer, 2002). On the other hand,

the CD spectrum obtained by Shi et al. (2002a) is remarkably

similar to the one obtained by Rucker and Creamer (2002)

for the peptide Ac-(Lys)7-Gly-Tyr-NH2 (K7) at pH 12,

which, according to the latter authors, has lost some PPII
helix character with an increase in the population of dis-

ordered states and/or the appearance of some small amount

of b-sheet.
Since Shi et al. (2002a) did not report the vicinal coupling

constants for the whole 11-residue peptide, but only for the

seven alanine residues, it is not possible to make an accurate

estimate of the overall PPII helix content based on their NMR

analysis; hence, we cannot compare the PPII helix content for

the whole peptide with our estimation of ;35% based on

their CD spectrum. It should be noted that the CD spectrum

published by Shi et al. (2002b) is shifted on the y axis when
compared with the one published by Shi et al. (2002a); such

a shift could easily lead to a wrong (90%) estimate of the PPII
helix content. According to N. R. Kallenbach (private

communication, 2002), the correct spectrum is the one

published by Shi et al. (2002a), which shows no sizeable

positive shoulder in the 215–230 nm, which, if present,

would have implied a high PPII content.

Our estimated value of ;35% of PPII helix content is in

disagreement with the ;90% PPII conformation reported by

Shi et al. (2002b) for the Ala7 sequence. The suggested

;90% PPII content for the Ala7 sequence, based on their

NMR analysis, means that the PPII helix content for the

whole ZAO peptide should be at least ;60%, i.e., with ;7

out of 11 residues in the PPII region. This lower value for the

PPII helix content is obtained under the assumption that

neither the diaminobutyric acid nor the ornithine residues

occupy the PPII conformational region. However, the

ornithine and diaminobutyric acid residues could also

contribute to the PPII helix content. For example, diamino-

butyric acid has one less side-chain methylene group than

ornithine and two less than lysine. A comparison of a-helix
stabilities of poly-L-lysine, poly-L-ornithine, and poly-

L-diaminobutyric acid) shows that, in water at pH \ 8,

they all belong to a nonstructured state, i.e., not to an a-
helical structure (Grourke and Gibbs, 1971). A homopoly-

mer of poly-L-lysine at low pH, ionic strength, and

temperature exhibits a CD spectrum consistent with a PPII
helix (Woody, 1992). Recently, Rucker and Creamer (2002)

suggested that the CD spectra collected at pH 7 for a lysine-

rich peptide (K7) indicate a high PPII helix content.

According to Rucker and Creamer (2002), this conforma-

tional preference for the PPII helical structure appears as the

result of the nature of the backbone rather than as

a consequence of electrostatic interaction between side

chains. Based on this hypothesis, it is conceivable that

similar behavior could be displayed by residues related to

lysine, such as ornithine or diaminobutyric acid, and hence,

the possibility that ornithine or diaminobutyric acid populate

the PPII region at pH 7 cannot be ruled out. In other words,

there is reason to believe that such discrepancy between the

NMR-determined (;60%) and CD-determined (;35%) PPII
helix content in the experiment of Shi et al. (2002a) could be

greater than these estimates.

Consider, further, the disagreement between the estimated

PPII helix content derived from CD (;35%) and NMR (60%)

data, respectively, by Shi et al. (2002a). The observation

made by Pappu and Rose (2002) that a seven-residue alanine-

based peptide can be dominated by fluctuations around the

left-handed PPII helix (f ¼ �788, c ¼ 1468) and a nearby

conformation (f ¼ �1478, c ¼ 818), i.e., populating the

F andD regions, respectively, of the Zimmerman et al. (1977)

map, may account for the disagreement. Because of the

degeneracy of the Karplus relation between coupling constant

andf-value, the coupling constants are similar in the F andD
regions. Thus, the assumption of such fluctuations may

explain the lowCD signal, although still being consistent with

the observed value for the NMR-determined vicinal coupling

constant. In other words, residues in theF andD regions of the

Zimmerman et al. (1977) map could each display a vicinal

coupling (3JNHa) constant\6.0 Hz, which is consistent with

the results of Shi et al. (2002a) at 28C. From the degenerate

Karplus relation, a coupling constant \6 Hz could corre-

spond to many values of f, viz., those in whole range of

�1808 # f # 1808. Therefore, one cannot identify

TABLE 3 Boltzmann-averaged values of the 13C chemical

shifts for the peptides PXP

Residue name (X)*

Chemical shift (ppm)

13Ca 13Cb 13Cg 13Cd

Proy 59.0 30.2 21.3 48.4

Alay 52.9 19.8

Glny 55.3 27.0 37.7 175.5

Glyy 46.8

Valy 67.5 35.3 22.7 19.8

Alaz 53.6 15.9

Ala§ 51.8 19.2

*For each residue in this table, we show the Boltzmann-averaged 13C

chemical shifts with respect to tetramethylsilane (TMS), by using the

leading member of each family obtained by the clustering procedure and the

locally dense quantum chemical approximation, as described in Methods.
yValues in this row belong to the residue X in the peptide PXP.
zValues in this row belong to the boldface Alanine in the peptide PAAP.
§Values in this row belong to the boldface Alanine in the peptide PAAP.
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a particular value of f based only on a coupling constant of

\6 Hz. Table 4 shows that non-proline residues can populate

A, A*, D, D*, C, and F regions with coupling constants\6

Hz. It is conceivable that experimental values for h3JNHai
observed by Shi et al. (2002a) could represent a Boltzmann-

averaged distribution of residues displaying preferences for

many regions of the Ramachandran map, because residues in

these regions could also display a backbone dihedral angle

f consistent with a coupling constant \6.0 Hz, without

displaying any particular regular structure such as a- or PPII-
helices.

Shi et al. (2002a) also suggested that the dihedral angle c
for all alanine residues are likely to be 11458 6 208, based
on the ratio of nuclear Overhauser effects between nearest-

neighbor b-protons. In such a case, only the F region of the

Zimmerman et al. (1977) map is compatible with the

observed values for the coupling constant (\6 Hz at 28C). If
this were the case, the existence of fluctuations around two

noncooperative structures, as proposed by Pappu and Rose

(2002), or a Boltzmann-averaged distribution of residues

displaying preferences for different regions of the Rama-

chandran map, as we proposed above, should be ruled out

because this c-dihedral angle is consistent only with the

possibility of the existence of residues in the PPII (or F)
region of the Ramachandran map. A possible clarification of

this problem could be obtained by an experimental de-

termination of the 13Ca and 13Cb chemical shifts for all the

alanine residues because, as was already noted (Spera and

Bax, 1991; Iwadate et al., 1999; Wishart and Case, 2001;

Vila, et al., 2003), both of the backbone dihedral angles

(f,c) seem to be the largest individual factors controlling
13Ca and 13Cb chemical shifts. In other words, determination

of the 13Ca and 13Cb chemical shifts would avoid the

uncertainties about an accurate c-dihedral angle and the

existence of degenerate values for the f-dihedral angle, as
happens with an analysis based only on a vicinal coupling

constant such as 3JNHa.

CONCLUSIONS

Our theoretical results and analysis for the PXP and PAAP

peptides are in qualitative agreement with 1), experimental

CD spectroscopic evidence for proline-containing unde-

camers with alanine and glycine substituted in the central

position (Petrella et al., 1996), showing that the PPII helix

content is reduced compared with the all-proline peptide; 2),

TABLE 4 Computation of the hh3JNHaii coupling constant

Peptide sequence* Boltzmann-averagedy value of the vicinal coupling constant h3JNHaiz
Zimmerman code of the low-

est energy conformation§

PPP{ 5.3 5.3 5.3 5.3 5.3 5.3 5.3 4.6 8.6 FFFFFFADD
PPPk 5.3 5.3 5.3 5.3 5.3 5.1 4.9 8.8 6.6 FFFFFFADA
PPP** 5.3 5.3 5.3 5.3 5.3 5.3 3.4 3.7 6.9 FFFFFFAAD
PAP{ 3.4 3.4 5.3 6.6 5.2 5.3 5.3 4.7 8.6 FFCDFFADD
PAPk 5.3 3.7 5.2 8.0 5.3 5.3 4.8 9.5 6.6 FFADFFADA
PAP** 5.3 5.3 3.4 6.8 5.3 5.3 3.4 4.1 4.3 FFFF*FFAAF
PAAP{ 5.1 5.3 5.3 4.9 6.8 5.3 5.3 3.5 4.4 6.5 FFAAFFFCD*D
PAAPk 5.2 5.3 5.3 6.8 8.0 5.2 5.3 5.1 8.6 6.3 FFAADFFADA
PAAP** 5.3 3.4 5.3 6.8 6.8 5.3 5.3 3.4 4.2 6.2 FFAA*A*FFACG
PQP{ 5.3 4.0 5.3 8.5 4.7 4.7 5.3 4.8 7.4 FFAEFFAA*D
PQPk 5.3 3.7 5.0 8.6 5.3 5.3 5.0 9.1 6.6 FFADFFADA
PQP** 5.3 5.3 3.4 6.8 3.4 3.4 3.4 5.1 4.4 FFAA*FFFAF
PGP{ 4.7 5.2 4.7 2.9 5.1 5.1 5.3 5.3 8.3 FFFD*FFAGF
PGPk 5.1 4.3 4.9 7.5 5.2 5.2 4.7 9.4 6.8 FFADFFADA
PGP** 3.4 3.4 3.4 6.2 5.3 5.3 3.4 2.9 7.9 FFADFFAAA
PVP{ 5.3 3.5 5.3 8.7 5.3 5.3 5.3 5.0 9.1 FFCDFFADD
PVPk 5.2 4.8 4.3 9.6 4.7 5.3 4.4 7.9 6.3 FFADFFADA
PVP** 3.4 5.3 3.4 5.4 3.4 5.3 5.3 6.0 7.6 FFAAFFACA

*PXP and PXXP represent the X residue in the sequence Ac-PPPXPPPGY-NH2 (for X ¼ Pro, Ala, Gln, Gly, and Val) and Ac-PPPXXPPPGY-NH2 (for

XX ¼ AlaAla), respectively.
yValues computed by using all the accepted conformations listed in Table 1. The values of the coupling constants of all the non-proline residues in the

sequence are in boldface. The values for the X residue in the sequence PXP and PAAP are underlined.
zThe theoretical values of the coupling constants were computed from the calculated values of the dihedral angle f by using the Karplus relation (Karplus,

1959, 1963): 3JNHa ¼ A cos2u � B cosu 1 C, with u ¼ |f � 60.0| and A ¼ 6.4, B ¼ 1.4, and C ¼ 1.9, as parameterized by Pardi et al. (1984).
§Conformations are classified in terms of the regions of the f–c Ramachandran (Ramachandran et al., 1963) map in which they occur (Zimmerman et al.,

1977). On the left-hand half of the map (f\ 08), the regions are defined as A–G; on the right-hand half of the map (f $ 08), the regions are defined by

inversion of the left-hand half around the center of the map and an asterisk is appended to the letters. The conformations of all non-proline residues in the

sequence are in boldface. The X residue in the sequence PXP and PAAP is underlined.
{The calculations were carried out by using a GP potential, as explained in Methods.
kThe calculations were carried out by using a GPSAS potential, as explained in Methods.

**The calculations were carried out at pH 7 at t ¼ 258C by using the GPSP potential, as described in Methods. The value of 10.10 was adopted as the pKo
a for

the ionizable group of the residue Tyr, as an average from the data of Perrin (1972).
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experimental results of Kelly et al. (2001) on PAP and PAAP

peptides; and 3), recent experimental evidence using

isothermal titration calorimetry (Ferreon and Hilser, 2003)

showing that the probability of the PPII conformation in the

denatured states of Ala is ;30%. As Ferreon and Hilser

noted, their (;30%) PPII content, estimated for Ala, differs

considerably from that determined by Shi et al. (2002a), viz.,

;90%. The prediction of Ferreon and Hilser for Ala is in

agreement with the ;35% PPII helix content that we have

estimated from the CD spectrum published by Shi et al.

(2002a).

Our simulations show that water affects the conforma-

tional properties of polyproline but, instead of stabilizing the

extended PPII helical form, a less extended structure is found

(involving some cis residues), in good agreement with

experimental observations made by Mattice and Mandelkern

(1971). In addition, we find that, in the presence of water,

there is no propagation of the PPII conformational preference

into the guest residues for all the PXP sequences, when X is

not proline.

Finally, using two approaches, namely the reduction of the

total number of conformations by the clustering procedure

and the quantum chemical computation of the chemical

shifts of the resulting leading members of each family by

using a locally dense basis set, we have been able to treat

the quantum chemical computation of Boltzmann-averaged

chemical shifts of 13C carbons in the PXP and PAAP

peptides.
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