28 research outputs found

    Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \phi^4_2

    Full text link
    We perform a Monte Carlo simulation calculation of the critical coupling constant for the continuum {\lambda \over 4} \phi^4_2 theory. The critical coupling constant we obtain is [{\lambda \over \mu^2}]_crit=10.24(3).Comment: 11 pages, 4 figures, LaTe

    Competing signatures of intersite and interlayer spin transfer in the ultrafast magnetization dynamics

    Full text link
    Optically driven intersite and interlayer spin transfer are individually known as the fastest processes for manipulating the spin order of magnetic materials on the sub 100 fs time scale. However, their competing influence on the ultrafast magnetization dynamics remains unexplored. In our work, we show that optically induced intersite spin transfer (also known as OISTR) dominates the ultrafast magnetization dynamics of ferromagnetic alloys such as Permalloy (Ni80Fe20) only in the absence of interlayer spin transfer into a substrate. Once interlayer spin transfer is possible, the influence of OISTR is significantly reduced and interlayer spin transfer dominates the ultrafast magnetization dynamics. This provides a new approach to control the magnetization dynamics of alloys on extremely short time scales by fine-tuning the interlayer spin transfer

    Cluster Expansion Approach to the Effective Potential in Φ2+14\Phi^4_{2+1}-Theory

    Full text link
    We apply a truncated set of dynamical equations of motion for connected equal-time Green functions up to the 4-point level to the investigation of spontaneous ground state symmetry breaking in Φ2+14\Phi^4_{2+1} quantum field theory. Within our momentum space discretization we obtain a second order phase transition as soon as the connected 3-point function is included. However, an additional inclusion of the connected 4-point function still shows a significant influence on the shape of the effective potential and the critical coupling.Comment: 1 compressed uuencoded postscript file with 5 figures included, 21 page

    Some applications of renormalized RPA in bosonic field theories

    Get PDF
    We present some applications of the renormalized RPA in bosonic field theories. We first present some developments for the explicit calculation of the total energy in Phi^4 theory and discuss its phase structure in 1+1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N) model within the renormalized RPA.Comment: 17 pages, 10 figures; small misprints corrected, final versio

    Induced versus intrinsic magnetic moments in ultrafast magnetization dynamics

    No full text
    Ferromagnetic metal alloys are today commonly used in spintronic and magnetic data storage devices. These multicompound structures consist of several magnetic sublattices exhibiting both intrinsic and induced magnetic moments. Here, we study the response of the element-specific magnetization dynamics for thin film systems based on purely intrinsic (CoFeB) and partially induced (FePt) magnetic moments using extreme ultraviolet pulses from high-harmonic generation (HHG) as an element-sensitive probe. In FePt, on the one hand, we observe an identical normalized transient magnetization for Fe and Pt throughout both the ultrafast demagnetization and the subsequent remagnetization. On the other hand, Co and Fe show a clear difference in the asymptotic limit of the remagnetization process in CoFeB, which is supported by calculations for the temperature-dependent behavior of the equilibrium magnetization using a dynamic spin model. Thus, in this work, we provide a vital step toward a comprehensive understanding of ultrafast light-induced magnetization dynamics in ferromagnetic alloys with sublattices of intrinsic and induced magnetic moments.publishe

    Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission

    No full text
    Several rapid antigen tests (RATs) for the detection of SARS-CoV-2 were evaluated recently. However, reliable performance data for laboratory-based, high-throughput antigen tests are lacking. Therefore and in response to a short-term shortage of PCR reagents, we evaluated DiaSorin's LIAISON SARS-CoV-2 antigen test in comparison to RT-qPCR, and concerning the application of screening non-COVID-19 patients on hospital admission. Applying the manufacturer-recommended cut-off of 200 arbitrary units (AU/mL) the specificity of the LIAISON Test was 100%, the overall analytical sensitivity 40.2%. Lowering the cut-off to 100 AU/mL increased the sensitivity to 49.7% and decreased the specificity to 98.3%. Confining the analysis to samples with an RT-qPCR result < 25 Ct resulted in a sensitivity of 91.2%. The quality of the LIAISON test is very similar to that of good RATs described in the literature with the advantage of high throughput and the disadvantage of relatively long analysis time. It passes the WHO quality criteria for rapid antigen tests and is characterized by particularly high specificity. The LIAISON test can therefore be used for the same applications as recommended for RATs by the WHO. Due to limited sensitivity, the LIAISON test should only be used for screening, if PCR-based assays are not available
    corecore