423 research outputs found

    Trapped-Atom-Interferometer in a Magnetic Microtrap

    Get PDF
    We propose a configuration of a magnetic microtrap which can be used as an interferometer for three-dimensionally trapped atoms. The interferometer is realized via a dynamic splitting potential that transforms from a single well into two separate wells and back. The ports of the interferometer are neighboring vibrational states in the single well potential. We present a one-dimensional model of this interferometer and compute the probability of unwanted vibrational excitations for a realistic magnetic potential. We optimize the speed of the splitting process in order suppress these excitations and conclude that such interferometer device should be feasible with currently available microtrap technique.Comment: 6 pages, 6 figures, submitted to PR

    Process tomography of ion trap quantum gates

    Get PDF
    A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this paper, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude--shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates

    Breakdown of superfluidity of an atom laser past an obstacle

    Full text link
    The 1D flow of a continuous beam of Bose-Einstein condensed atoms in the presence of an obstacle is studied as a function of the beam velocity and of the type of perturbing potential (representing the interaction of the obstacle with the atoms of the beam). We identify the relevant regimes: stationary/time-dependent and superfluid/dissipative; the absence of drag is used as a criterion for superfluidity. There exists a critical velocity below which the flow is superfluid. For attractive obstacles, we show that this critical velocity can reach the value predicted by Landau's approach. For penetrable obstacles, it is shown that superfluidity is recovered at large beam velocity. Finally, enormous differences in drag occur when switching from repulsive to attractive potential.Comment: 15 pages, 6 figure

    Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap

    Full text link
    We report on the transport of mixed quantum degenerate gases of bosonic 87Rb and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The samples are transported over a distance of 6 mm to the geometric center of the anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented by a small modification of the QUIC trap and is free of losses and heating. It allows all experiments using QUIC traps to use the highly homogeneous magnetic fields that can be created in the center of a QUIC trap and improves the optical access to the atoms, e.g., for experiments with optical lattices. This mechanism may be cascaded to cover even larger distances for applications with quantum degenerate samples.Comment: 7 pages, 8 figure

    Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir-Polder potential

    Get PDF
    We investigate the possibility to trap ultracold atoms near the outside of a metallic carbon nanotube (CN) which we imagine to use as a miniaturized current-carrying wire. We calculate atomic spin flip lifetimes and compare the strength of the Casimir-Polder potential with the magnetic trapping potential. Our analysis indicates that the Casimir-Polder force is the dominant loss mechanism and we compute the minimum distance to the carbon nanotube at which an atom can be trapped.Comment: 8 pages, 3 figure

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100

    Get PDF
    The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.publishedVersio

    Analysis of an atom laser based on the spatial control of the scattering length

    Full text link
    In this paper we analyze atom lasers based on the spatial modulation of the scattering length of a Bose-Einstein Condensate. We demonstrate, through numerical simulations and approximate analytical methods, the controllable emission of matter-wave bursts and study the dependence of the process on the spatial dependence of the scattering length along the axis of emission. We also study the role of an additional modulation of the scattering length in time.Comment: Submitted to Phys. Rev.

    Robust entanglement

    Full text link
    It is common belief among physicists that entangled states of quantum systems loose their coherence rather quickly. The reason is that any interaction with the environment which distinguishes between the entangled sub-systems collapses the quantum state. Here we investigate entangled states of two trapped Ca+^+ ions and observe robust entanglement lasting for more than 20 seconds
    • …
    corecore