98 research outputs found

    Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events

    Get PDF
    Diurnal variation of number size distribution (particle size 3-800nm) and modal parameters (geometric standard deviation, geometric mean diameter and modal aerosol particle concentration) in a highly polluted urban environment was investigated during October and November 2002 in New Delhi, India. Continuous monitoring for more than two weeks with the time resolution of 10min was conducted using a Differential Mobility Particle Sizer (twin DMPS). The results indicated clear increase in Aitken mode (25-100nm) particles during traffic peak hours, but towards the evenings there were more Aitken mode particles compared to the mornings. Also high concentrations of accumulation mode particles (>100nm) were detected in the evenings only. In the evenings, biomass/refuse burning and cooking are possible sources beside the traffic. We have also shown that nucleation events are possible in this kind of atmosphere even though as clear nucleation events as observed in rural sites could not be detected. The formation rate of 3nm particles (J3) of the observed events varied from 3.3 to 13.9cm<sup>-3</sup>s<sup>-1</sup> and the growth rate varied from 11.6 to 18.1nmh<sup>-1</sup> showing rapid growth and high formation rate, which seems to be typical in urban areas

    Urban aerosol number size distributions

    No full text
    International audienceAerosol number size distributions have been measured since 5 May 1997 in Helsinki, Finland. The presented aerosol data represents size distributions within the particle diameter size range 8-400nm during the period from May 1997 to March 2003. The daily, monthly and annual patterns of the aerosol particle number concentrations were investigated. The temporal variation of the particle number concentration showed close correlations with traffic activities. The highest total number concentrations were observed during workdays; especially on Fridays, and the lowest concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were observed during winter and spring and lower concentrations were observed during June and July. More than 80% of the number size distributions had three modes: nucleation mode (30nm), Aitken mode (20-100nm) and accumulation mode (90nm). Less than 20% of the number size distributions had either two modes or consisted of more than three modes. Two different measurement sites were used; in the first (Siltavuori, 5.5.1997-5.3.2001), the arithmetic means of the particle number concentrations were 7000cm, 6500cm, and 1000cm respectively for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6.3.2001-28.2.2003) they were 5500cm, 4000cm, and 1000cm. The total number concentration in nucleation and Aitken modes were usually significantly higher during workdays than during weekends. The temporal variations in the accumulation mode were less pronounced. The lower concentrations at Kumpula were mainly due to building construction and also the slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation at both sites

    Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    No full text
    International audienceThe hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12?1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25?1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways

    Field measurements of hygroscopic properties and state of mixing of nucleation mode particles

    Get PDF
    International audienceAn Ultrafine Tandem Differential Mobility Analyser (UF-TDMA) has been used in several field campaigns over the last few years. The investigations were focused on the origin and properties of nucleation event aerosols, which are observed frequently in various environments. This paper gives a summary of the results of 10 nm and 20 nm particle hygroscopic properties from different measurement sites: an urban site, an urban background site and a forest site in Finland and a coastal site in western Ireland. The data can be classified in four hygroscopic growth classes: hydrofobic, less-hygroscopic, more-hygroscopic and sea-salt. Similar classification has been earlier presented for Aitken and accumulation mode particles. In urban air, the summertime 10 nm particles showed varying less-hygroscopic growth behaviour, while winter time 10 nm and 20 nm particles were externally mixed with two different hygroscopic growth modes. The forest measurements revealed diurnal behaviour of hygroscopic growth, with high growth factors at day time and lower during night. The urban background particles had growth behaviour similar to the urban and forest measurement sites depending on the origin of the observed particles. The coastal measurements were strongly affected by air mass history. Both 10 nm and 20 nm particles were hygroscopic in marine background air. The 10 nm particles produced during clean nucleation burst periods were hydrofobic. Diurnal variation and higher growth factors of 10 nm particles were observed in air affected by other source regions. External mixing was occasionally observed at all the sites, but incidents with more than two growth modes were extremely rare

    First measurements of the number size distribution of 1-2nm aerosol particles released from manufacturing processes in a cleanroom environment

    Get PDF
    This study was conducted to observe a potential formation and/or release of aerosol particles related to manufacturing processes inside a cleanroom. We introduce a novel technique to monitor airborne sub 2nm particles in the cleanroom and present results from a measurement campaign during which the total particle number concentration (>1nm and >7 nm) and the size resolved concentration in the 1 to 2nm size range were measured. Measurements were carried out in locations where atomic layer deposition (ALD), sputtering, and lithography processes were conducted, with a wide variety of starting materials. During our campaign in the clean room, we observed several time periods when the particle number concentration was 10(5) cm(-3) in the sub 2nm size range and 10(4) cm(-3) in the size class larger than 7nm in one of the sampling locations. The highest concentrations were related to the maintenance processes of the manufacturing machines, which were conducted regularly in that specific location. Our measurements show that around 500cm(-3) sub 2nm particles or clusters were in practice always present in this specific cleanroom, while the concentration of particles larger than 2nm was less than 2cm(-3). During active processes, the concentrations of sub 2nm particles could rise to over 10(5) cm(-3) due to an active new particle formation. The new particle formation was most likely induced by a combination of the supersaturated vapors, released from the machines, and the very low existing condensation sink, leading to pretty high formation rates J(1.4 nm) = (9 4) cm(-3) s(-1) and growth rates of particles (GR(1.1-1.3 nm) = (6 +/- 3) nm/h and GR(1.3-1.8 nm) = (14 +/- 3) nm/h).Copyright (c) 2017 American Association for Aerosol ResearchPeer reviewe

    Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone

    Get PDF
    Background: Floor dust is commonly used for microbial determinations in epidemiological studies to estimate early-life indoor microbial exposures. Resuspension of floor dust and its impact on infant microbial exposure is, however, little explored. The aim of our study was to investigate how floor dust resuspension induced by an infant's crawling motion and an adult walking affects infant inhalation exposure to microbes. Results: We conducted controlled chamber experiments with a simplified mechanical crawling infant robot and an adult volunteer walking over carpeted flooring. We applied bacterial 16S rRNA gene sequencing and quantitative PCR to monitor the infant breathing zone microbial content and compared that to the adult breathing zone and the carpet dust as the source. During crawling, fungal and bacterial levels were, on average, 8- to 21-fold higher in the infant breathing zone compared to measurements from the adult breathing zone. During walking experiments, the increase in microbial levels in the infant breathing zone was far less pronounced. The correlation in rank orders of microbial levels in the carpet dust and the corresponding infant breathing zone sample varied between different microbial groups but was mostly moderate. The relative abundance of bacterial taxa was characteristically distinct in carpet dust and infant and adult breathing zones during the infant crawling experiments. Bacterial diversity in carpet dust and the infant breathing zone did not correlate significantly. Conclusions: The microbiota in the infant breathing zone differ in absolute quantitative and compositional terms from that of the adult breathing zone and of floor dust. Crawling induces resuspension of floor dust from carpeted flooring, creating a concentrated and localized cloud of microbial content around the infant. Thus, the microbial exposure of infants following dust resuspension is difficult to predict based on common house dust or bulk air measurements. Improved approaches for the assessment of infant microbial exposure, such as sampling at the infant breathing zone level, are needed.Peer reviewe

    Process-generated nanoparticles from ceramic tile sintering : Emissions, exposure and environmental release

    Get PDF
    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal. (C) 2016 The Authors. Published by Elsevier B.V.Peer reviewe

    Evaluating the Theoretical Background of STOFFENMANAGERÂź and the Advanced REACH Tool

    Get PDF
    STOFFENMANAGER¼ and the Advanced REACH Tool (ART) are recommended tools by the European Chemical Agency for regulatory chemical safety assessment. The models are widely used and accepted within the scientific community. STOFFENMANAGER¼ alone has more than 37 000 users globally and more than 310 000 risk assessment have been carried out by 2020. Regardless of their widespread use, this is the first study evaluating the theoretical backgrounds of each model. STOFFENMANAGER¼ and ART are based on a modified multiplicative model where an exposure base level (mg m−3) is replaced with a dimensionless intrinsic emission score and the exposure modifying factors are replaced with multipliers that are mainly based on subjective categories that are selected by using exposure taxonomy. The intrinsic emission is a unit of concentration to the substance emission potential that represents the concentration generated in a standardized task without local ventilation. Further information or scientific justification for this selection is not provided. The multipliers have mainly discrete values given in natural logarithm steps (
, 0.3, 1, 3, 
) that are allocated by expert judgements. The multipliers scientific reasoning or link to physical quantities is not reported. The models calculate a subjective exposure score, which is then translated to an exposure level (mg m−3) by using a calibration factor. The calibration factor is assigned by comparing the measured personal exposure levels with the exposure score that is calculated for the respective exposure scenarios. A mixed effect regression model was used to calculate correlation factors for four exposure group [e.g. dusts, vapors, mists (low-volatiles), and solid object/abrasion] by using ~1000 measurements for STOFFENMANAGER¼ and 3000 measurements for ART. The measurement data for calibration are collected from different exposure groups. For example, for dusts the calibration data were pooled from exposure measurements sampled from pharmacies, bakeries, construction industry, and so on, which violates the empirical model basic principles. The calibration databases are not publicly available and thus their quality or subjective selections cannot be evaluated. STOFFENMANAGER¼ and ART can be classified as subjective categorization tools providing qualitative values as their outputs. By definition, STOFFENMANAGER¼ and ART cannot be classified as mechanistic models or empirical models. This modeling algorithm does not reflect the physical concept originally presented for the STOFFENMANAGER¼ and ART. A literature review showed that the models have been validated only at the ‘operational analysis’ level that describes the model usability. This review revealed that the accuracy of STOFFENMANAGER¼ is in the range of 100 000 and for ART 100. Calibration and validation studies have shown that typical log-transformed predicted exposure concentration and measured exposure levels often exhibit weak Pearson’s correlations (r is <0.6) for both STOFFENMANAGER¼ and ART. Based on these limitations and performance departure from regulatory criteria for risk assessment models, it is recommended that STOFFENMANAGER¼ and ART regulatory acceptance for chemical safety decision making should be explicitly qualified as to their current deficiencies.Peer reviewe
    • 

    corecore