1,387 research outputs found

    A Bayesian test for the appropriateness of a model in the biomagnetic inverse problem

    Get PDF
    This paper extends the work of Clarke [1] on the Bayesian foundations of the biomagnetic inverse problem. It derives expressions for the expectation and variance of the a posteriori source current probability distribution given a prior source current probability distribution, a source space weight function and a data set. The calculation of the variance enables the construction of a Bayesian test for the appropriateness of any source model that is chosen as the a priori infomation. The test is illustrated using both simulated (multi-dipole) data and the results of a study of early latency processing of images of human faces. [1] C.J.S. Clarke. Error estimates in the biomagnetic inverse problem. Inverse Problems, 10:77--86, 1994.Comment: 13 pages, 16 figures. Submitted to Inverse Problem

    State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing

    Get PDF
    Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L2L^2 regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intracortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell's equations while the latent model representing neural dynamics is given by a random walk process.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS483 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride

    Get PDF
    We demonstrate that the valence energy-loss function of hexagonal boron nitride (hBN) displays a strong anisotropy in shape, excitation energy and dispersion for momentum transfer q parallel or perpendicular to the hBN layers. This is manifested by e.g. an energy shift of 0.7 eV that cannot be captured by single-particle approaches and is a demonstration of a strong anisotropy in the two-body electron-hole interaction. Furthermore, for in-plane directions of q we observe a splitting of the -plasmon in the M direction that is absent in the K direction and this can be traced back to band-structure effects.Comment: 10 pages, 4 figure

    Relapsing sepsis episodes of Escherichia coli with CTX-M ESBL or derepressed ampC genes in a patient with chronic autoimmune pancreatitis complicated by IgG4 hypergammaglobulinaemia

    Get PDF
    Bloodstream recurrent infections have been reported for a variety of opportunistic bacteria. These are often either catheter related or are caused by indwelling devices. A case of relapsing sepsis with two Escherichia coli strains carrying extended-spectrum β-lactamase and derepressed ampC genes is reported. The patient had seven episodes of bloodstream infections within 1 year and was diagnosed with chronic autoimmune pancreatitis and IgG4 hypergammaglobulinaemia. Abscesses were found in his spleen and pancreas cauda, which was finally resected. Relapses of bacteraemia with resistant enterobacteria should be considered during perioperative protection. Surgical removal of the infective focus could be curative.Peer reviewe

    Electrode thickness measurement of a Si(Li) detector for the SIXA array

    Get PDF
    Cathode electrodes of the Si(Li) detector elements of the SIXA X-ray spectrometer array are formed by gold-palladium alloy contact layers. The equivalent thickness of gold in one element was measured by observing the characteristic L-shell X-rays of gold excited by monochromatised synchrotron radiation with photon energies above the L3 absorption edge of gold. The results obtained at 4 different photon energies below the L2 edge yield an average value of 22.4(35) nm which is consistent with the earlier result extracted from detection efficiency measurements. PACS: 29.40.Wk; 85.30.De; 07.85.Nc; 95.55.Ka Keywords: Si(Li) detectors, X-ray spectrometers, X-ray fluorescence, detector calibration, gold electrodes, synchrotron radiationComment: 10 pages, 4 PostScript figures, uses elsart.sty, submitted to Nucl. Instrum. Meth.

    Kollageeni hydrogeelien rakennusaineena

    Get PDF
    Tiivistelmä. Tutkielman pääpaino ohjautuu kollageeniin pohjautuvien hydrogeelien valmistukseen, rakenteeseen, ominaisuuksiin ja käyttöön. Ekstrasellulaarisen matriksin rakennetta ja sen osia esitellään johdanto-osassa. Kollageenihydrogeelien aplikaatioissa tutustutaan lyhyesti myös bioprinttaukseen ja OOAC (organ-on-a-chip) -teknologiaan

    Love songs and serenades: a theoretical review of music and romantic relationships

    Get PDF
    In this theoretical review, we examine how the roles of music in mate choice and social bonding are expressed in romantic relationships. Darwin’s Descent of Man originally proposed the idea that musicality might have evolved as a sexually selected trait. This proposition, coupled with the portrayal of popular musicians as sex symbols and the prevalence of love-themed lyrics in music, suggests a possible link between music and attraction. However, recent scientific exploration of the evolutionary functions of music has predominantly focused on theories of social bonding and group signaling, with limited research addressing the sexual selection hypothesis. We identify two distinct types of music-making for these different functions: music for attraction, which would be virtuosic in nature to display physical and cognitive fitness to potential mates; and music for connection, which would facilitate synchrony between partners and likely engage the same reward mechanisms seen in the general synchrony-bonding effect, enhancing perceived interpersonal intimacy as a facet of love. Linking these two musical functions to social psychological theories of relationship development and the components of love, we present a model that outlines the potential roles of music in romantic relationships, from initial attraction to ongoing relationship maintenance. In addition to synthesizing the existing literature, our model serves as a roadmap for empirical research aimed at rigorously investigating the possible functions of music for romantic relationships
    • …
    corecore