15 research outputs found

    Benzimidazole and aminoalcohol derivatives show in vitro anthelmintic activity against Trichuris muris and Heligmosomoides polygyrus

    Get PDF
    [EN]Background: Infections by gastrointestinal nematodes cause significant economic losses and disease in both humans and animals worldwide. The discovery of novel anthelmintic drugs is crucial for maintaining control of these parasitic infections. Methods: For this purpose, the aim of the present study was to evaluate the potential anthelmintic activity of three series of compounds against the gastrointestinal nematodes Trichuris muris and Heligmosomoides polygyrus in vitro. The compounds tested were derivatives of benzimidazole, lipidic aminoalcohols and diamines. A primary screening was performed to select those compounds with an ability to inhibit T. muris L1 motility by > 90% at a single concentration of 100 ”M; then, their respective IC50 values were calculated. Those compounds with IC50 < 10 ”M were also tested against the adult stage of T. muris and H. polygyrus at a single concentration of 10 ”M. Results: Of the 41 initial compounds screened, only compounds AO14, BZ6 and BZ12 had IC50 values < 10 ”M on T. muris L1 assay, showing IC50 values of 3.30, 8.89 and 4.17 ”M, respectively. However, only two of them displayed activity against the adult stage of the parasites: BZ12 killed 81% of adults of T. muris (IC50 of 8.1 ”M) and 53% of H. polygyrus while BZ6 killed 100% of H. polygyrus adults (IC50 of 5.3 ”M) but only 17% of T. muris. Conclusions: BZ6 and BZ12 could be considered as a starting point for the synthesis of further structurally related compounds.SIFinancial support came from MINECO: RETOS (AGL2016-79813-C2-1R/2R) and Junta de Castilla y LeĂłn co-financed by FEDER, UE [LE020P17]. EVG was funded by FPU17/00627; VCGA and MAB are recipients of Junta de Castilla y Leon (JCyL) (LE082-18, LE051-18, respectively) and MMV by the Spanish “Ramon y Cajal” Programme (Ministerio de EconomĂ­a y competitividad; MMV, RYC-2015-18368

    Structural Requirements for Dihydrobenzoxazepinone Anthelmintics:Actions against Medically Important and Model Parasites: Trichuris muris, Brugia malayi, Heligmosomoides polygyrus, and Schistosoma mansoni

    Get PDF
    Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure–activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics

    Structure-activity relationship and in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies of N-aryl 3-trifluoromethyl pyrido[1,2-a]benzimidazoles that are efficacious in a mouse model of Schistosomiasis

    Full text link
    We have previously reported on the antischistosomal activity of pyrido[1,2- a]benzimidazole (PBI) derivatives. As a follow-up, we designed and prosecuted further structure-activity relationship (SAR) studies that incorporate N-aryl substitutions on the PBI scaffold. Investigations into the in vitro antischistosomal activity against newly transformed schistosomula (NTS) and adult worms revealed several leads with promising potency. Active compounds with a good cytotoxicity profile were tested in vivo whereby 6 and 44 induced noteworthy reduction (62-69%) in the worm load in the Schistosoma mansoni mouse model. Pharmacokinetic analysis on 44 pointed to slow absorption, low volume of distribution, and low plasma clearance indicating the potential of these compounds to achieve a long duration of action. Overall, our work demonstrates that PBI chemotype is a promising scaffold in the discovery of new antischistosomal leads

    Evaluation of emodepside in laboratory models of human intestinal nematode and schistosome infections

    Get PDF
    Abstract Background Helminthiases are very prevalent worldwide, yet their treatment and control rely on a handful of drugs. Emodepside, a marketed broad-spectrum veterinary anthelminthic with a unique mechanism of action, undergoing development for onchocerciasis is an interesting anthelmintic drug candidate. We tested the in vitro and in vivo activity of emodepside on nematode species that serve as models for human soil-transmitted helminth infection as well as on schistosomes. Methods In vitro viability assays were performed over a time course of 72 hours for Trichuris muris, Necator americanus, Ancylostoma ceylanicum, Heligmosomoides polygyrus, Strongyloides ratti, Schistosoma mansoni and Schistosoma haematobium. The drug effect was determined by the survival rate for the larvae and by phenotypical scores for the adult worms. Additionally, mice infected with T. muris and hamsters harboring hookworm infection (N. americanus or A. ceylanicum) were administered orally with emodepside at doses ranging from 1.25 to 75 mg/kg. Expelled worms in the feces were counted until 3 days post-drug intake and worms residing in the intestines were collected and counted after dissection. Results After 24 hours, emodepside was very active in vitro against both larval and adult stages of the nematodes T. muris, A. ceylanicum, N. americanus, H. polygyrus and S. ratti (IC50 < 4 ”M). The good in vitro activity was confirmed in vivo. Hamsters infected with the hookworms were cured when administered orally with 2.5 mg/kg of the drug. Emodepside was also highly active in vivo against T. muris (ED50 = 1.2 mg/kg). Emodepside was moderately active on schistosomula in vitro (IC50 < 8 ”M) 24 h post-drug incubation and its activity on adult S. mansoni and S. haematobium was low (IC50: 30–50 ”M). Conclusions Emodepside is highly active against a broad range of nematode species both in vitro and in vivo. The development of emodepside for treating soil-transmitted helminth infections should be pursued

    Visible Light-driven Metal-free C–H Functionalization: Access to New Bioactive Tetrahydroisoquinoline-Butenolide Hybrids via Domino Amine Oxidation/Vinylogous Mannich Reaction

    Full text link
    An efficient metal-free visible light-driven two-step domino reaction towards new bioactive tetrahydroisoquinoline-butenolide hybrid compounds was developed for the first time. Combination of fluorescein as photosensitizer and thiourea as an additive was found to be the most effective way to promote an aerobic amine oxidation/vinylogous Mannich domino reaction sequence with yields up to 97% for a broad substrate scope. While fluorescein without thiourea additive gave product in 84% yield, it was even observed that thiourea in absence of fluorescein is also able to promote formation of product with good yield of 75%, which is explained by a potential role of thiourea as an electron-transfer mediator in light-induced amine oxidation. Both experimental and computational evidence supported the crucial role of singlet oxygen in the developed C–H functionalization reaction. In addition, in vitro studies of tetrahydroisoquinoline-butenolide hybrid compounds demonstrated their high antischistosomal and anti-cancer activities

    SAR of a new antischistosomal urea carboxylic acid

    Full text link
    Urea carboxylic acids, products of aryl hydantoin hydrolysis, were recently identified as a new antischistosomal chemotype. We now describe a baseline structure-activity relationship (SAR) for this compound series. With one exception, analogs of lead urea carboxylic acid 2 were quite polar with Log D; 7.4; values ranging from -1.9 to 1.8, had high aqueous solubilities in the range of 25-100 ”g/mL, and were metabolically stable. None of the compounds had measurable in vitro antischistosomal activity or cytotoxicity, but four of these had moderate worm burden reduction (WBR) values of 42-70% when they were administered as single 100 mg/kg oral doses to S. mansoni-infected mice. These data indicate that with the exception of the gem-dimethyl substructure and the distal nitrogen atom of the urea functional group, the rest of the structure of 2 is required for in vivo antischistosomal activity

    G-quadruplexes in helminth parasites

    Get PDF
    International audienceParasitic helminths infecting humans are highly prevalent infecting ∌2 billion people worldwide, causing inflammatory responses, malnutrition and anemia that are the primary cause of morbidity. In addition, helminth infections of cattle have a significant economic impact on livestock production, milk yield and fertility. The etiological agents of helminth infections are mainly Nematodes (roundworms) and Platyhelminths (flatworms). G-quadruplexes (G4) are unusual nucleic acid structures formed by G-rich sequences that can be recognized by specific G4 ligands. Here we used the G4Hunter Web Tool to identify and compare potential G4 sequences (PQS) in the nuclear and mitochondrial genomes of various helminths to identify G4 ligand targets. PQS are nonrandomly distributed in these genomes and often located in the proximity of genes. Unexpectedly, a Nematode, Ascaris lumbricoides, was found to be highly enriched in stable PQS. This species can tolerate high-stability G4 structures, which are not counter selected at all, in stark contrast to most other species. We experimentally confirmed G4 formation for sequences found in four different parasitic helminths. Small molecules able to selectively recognize G4 were found to bind to Schistosoma mansoni G4 motifs. Two of these ligands demonstrated potent activity both against larval and adult stages of this parasite

    Synthesis, characterization and antiparasitic activity of organometallic derivatives of the anthelmintic drug albendazole

    Full text link
    Helminthiases, a group of neglected tropical diseases, affect more than one billion people mainly in tropical and subtropical regions. Moreover, major intestinal protozoa have a significant impact on global public health. Albendazole (ABZ) is a broad-spectrum anthelmintic recommended by the World Health Organisation (WHO). However, drug resistance is emerging due to its widespread use. In order to tackle this problem, taking into account the spectacular results obtained with ferroquine, an organometallic derivatization of the antimalarial drug chloroquine, we have prepared, in this study, a series of new ferrocenyl and ruthenocenyl derivatives of the organic drug ABZ and assessed their activity against different helminths and protozoans, namely Trichuris muris, Heligmosomoides polygygrus, Schistosoma mansoni, Giardia lamblia, Haemonchus contortus and Toxoplasma gondii. The ferrocene-containing ABZ analogue 2d exhibited over 70% activity against T. muris adults in vitro at 200 ÎŒM and no toxicity to mammalian cells (IC50 >100 ÎŒM). H. polygyrus adults were not affected by any of the derivatives tested. Against T. gondii, the ferrocene-containing ABZ analogues 1a and 2d showed better in vitro activity than ABZ and low toxicity to the host cells. The activity of the analogous ruthenocenyl compound 2b against S. mansoni and T. gondii in vitro might be attributed to its toxicity towards the host cells rather than a specific antiparasitic activity. These results demonstrate that the derivatives show a species specific in vitro activity and the choice of the organometallic moieties attached to the organic drug is playing a very important role. Two of our organometallic compounds, namely 1b and 2d, were tested in T. muris infected mice. At a 400 mg kg-1 dose, the compounds showed moderate worm burden reductions but low worm expulsion rates. Overall, this work, which is one of the first studies reporting the potential of organometallic compounds on a very broad range of parasitic helminths and protozoan, is a clear confirmation of the potential of organometallic complexes against parasites of medical and veterinary importance

    Synthesis, characterization and antiparasitic activity of organometallic derivatives of the anthelmintic drug albendazole

    Full text link
    Helminthiases, a group of neglected tropical diseases, affect more than one billion people mainly in tropical and subtropical regions. Moreover, major intestinal protozoa have a significant impact on global public health. Albendazole (ABZ) is a broad-spectrum anthelmintic recommended by the World Health Organisation (WHO). However, drug resistance is emerging due to its widespread use. In order to tackle this problem, taking into account the spectacular results obtained with ferroquine, an organometallic derivatization of the antimalarial drug chloroquine, we have prepared, in this study, a series of new ferrocenyl and ruthenocenyl derivatives of the organic drug ABZ and assessed their activity against different helminths and protozoans, namely Trichuris muris, Heligmosomoides polygygrus, Schistosoma mansoni, Giardia lamblia, Haemonchus contortus and Toxoplasma gondii. The ferrocene-containing ABZ analogue 2d exhibited over 70% activity against T. muris adults in vitro at 200 mu M and no toxicity to mammalian cells (IC50 >100 mu M). H. polygyrus adults were not affected by any of the derivatives tested. Against T. gondii, the ferrocene-containing ABZ analogues 1a and 2d showed better in vitro activity than ABZ and low toxicity to the host cells. The activity of the analogous ruthenocenyl compound 2b against S. mansoni and T. gondii in vitro might be attributed to its toxicity towards the host cells rather than a specific antiparasitic activity. These results demonstrate that the derivatives show a species specific in vitro activity and the choice of the organometallic moieties attached to the organic drug is playing a very important role. Two of our organometallic compounds, namely 1b and 2d, were tested in T. muris infected mice. At a 400 mg kg(-1) dose, the compounds showed moderate worm burden reductions but low worm expulsion rates. Overall, this work, which is one of the first studies reporting the potential of organometallic compounds on a very broad range of parasitic helminths and protozoan, is a clear confirmation of the potential of organometallic complexes against parasites of medical and veterinary importance
    corecore