32 research outputs found

    Lupus Myocarditis Presenting as Acute Congestive Heart Failure: A Case Report

    Get PDF
    A young woman who had a delivery history 3 months previously presented with dyspnea and orthopnea. Initial findings of physical examination, chest radiography, and echocardiogram showed typical congestive heart failure with severe left ventricular (LV) dysfunction. At first, we considered peripartum cardiomyopathy because she had given birth to a baby 3 months previously. However, even though we massively tried conventional drug therapy for 10 days, the patient still remained with refractory heart failure. We performed additional laboratory studies such as complement level and autoantibodies, of which the results supported systemic lupus erythematosus. We could make the diagnosis of acute lupus myocarditis and treated her with corticosteroid. The symptoms were dramatically disappeared and LV function also improved

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 ÎŒm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10 22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∌160 ± 30 ÎŒG in the main starless core and up to ∌90 ± 40 ÎŒG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĂ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations

    Get PDF
    We report 850 Όm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 ÎŒm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense ( NH2∌1022 –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∌160 ± 30 ÎŒG in the main starless core and up to ∌90 ± 40 ÎŒG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĂ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main

    Get PDF
    Abstract: We present 850 ÎŒm polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope as part of the B-fields In STar-forming Region Observations survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less-dense filamentary structures where NH2<0.93×1022 cm−2 (magnetic fields perpendicular to density gradients), while they are perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at NH2≈4.6×1022 cm−2. This can be interpreted as a signature of core formation. At NH2≈16×1022 cm−2, magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments (B POS = 60–300 ÎŒG)) using the Davis–Chandrasekhar–Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities

    The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2

    Get PDF
    We present and analyze observations of polarized dust emission at 850 ÎŒm toward the central 1 × 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis–Chandrasekhar–Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 − 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 ± 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 ± 0.02. Additionally, the mean AlfvĂ©n Mach number is 0.35 ± 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical

    Efficient Management of Domain Foreign Agents in Mobile Computing Environment Using Load Balance

    No full text
    Abstract. Mobile IP is a protocol standard designed to be used in a mobile computing environment. However, Mobile IP has a drawback to incur a lot of handoff delays and waste network resources, since CoA registration packets need to go through a HA first whenever a mobile node moves. To solve such problem, this paper proposes a new scheme that, for intra-domain movement, efficiently performs local handoff without notifying the HA. Specifically, based on the notion of load balance, the proposed scheme allows every FA in a domain to become the root FA(a.k.a. Domain FA) dynamically, thus distributing the registration task into many other foreign agents. Our simulation results show that the proposed method proves to reduce registration packets by approximately 7-15% more than existing methods

    Comparison of hemodynamic effects and resuscitation outcomes between automatic simultaneous sterno-thoracic cardiopulmonary resuscitation device and LUCAS in a swine model of cardiac arrest.

    No full text
    IntroductionMechanical cardiopulmonary resuscitation (CPR) devices are widely used to rescue patients from cardiac arrest. This study aimed to compare hemodynamic effects and resuscitation outcomes between a motor-driven, automatic simultaneous sterno-thoracic cardiopulmonary resuscitation device and the Lund University cardiac arrest system (LUCAS).Material and methodsAfter 2 minutes of electrically induced ventricular fibrillation (VF), Yorkshire pigs (weight 35-60 kg) received CPR with an automatic simultaneous sterno-thoracic CPR device (X-CPR group, n = 13) or the Lund University cardiac arrest system (LUCAS group, n = 12). Basic life support for 6 minutes and advanced cardiovascular life support for 12 minutes, including defibrillation and epinephrine administration, were provided. Hemodynamic parameters and resuscitation outcomes, including return of spontaneous circulation (ROSC), 24-hour survival, and cerebral performance category (CPC) at 24 hours, were evaluated.ResultsHemodynamic parameters, including aortic pressures, coronary perfusion pressure, carotid blood flow, and end-tidal carbon dioxide pressure were not significantly different between the two groups. Resuscitation outcomes were also not significantly different between the groups (X-CPR vs. LUCAS; rate of ROSC: 31% vs 25%, p = 1.000; 24-hour survival rate: 31% vs 17%, p = 0.645; neurological outcome with CPC ≀2: 31% vs 17%, p = 0.645). Also no significant difference in incidence complications associated with resuscitation was found between the groups.ConclusionsCPR with a motor-driven X-CPR and CPR with the LUCAS produced similar hemodynamic effects and resuscitation outcomes in a swine model of cardiac arrest
    corecore